2025
Chemokines as predictive biomarkers for immune checkpoint inhibitor (ICI) efficacy in triple negative breast cancer (TNBC).
Gandhi S, Deshmukh S, Wu S, Xiu J, Lesinski G, Paulos C, Czerniecki B, Chalasani P, Yao S, Ernstoff M, Chumsri S, Trapani D, Leone J, Lustberg M, Sledge G, Kalinsky K, Kalinski P. Chemokines as predictive biomarkers for immune checkpoint inhibitor (ICI) efficacy in triple negative breast cancer (TNBC). Journal Of Clinical Oncology 2025, 43: 1106-1106. DOI: 10.1200/jco.2025.43.16_suppl.1106.Peer-Reviewed Original ResearchTriple negative breast cancerImmune checkpoint inhibitorsTumor mutational burdenTumor microenvironmentCXCR3 expressionBreast cancerHER2+Overall survivalPredictive biomarkersHigher expression of immune checkpoint genesExpression of immune checkpoint genesImmune checkpoint inhibitor pembrolizumabT cell inflamed scoreImmune checkpoint inhibitor efficacyAssociated with longer survivalReal-world overall survivalCognate receptor CXCR3Enhance ICI efficacyPD-L1 positivityT cell infiltrationImmune checkpoint genesAggressive breast cancerNegative breast cancerTumor microenvironment characteristicsImmune cell fractionsEpigenetic therapy sensitizes anti–PD-1 refractory head and neck cancers to immunotherapy rechallenge
Qin T, Mattox A, Campbell J, Park J, Shin K, Li S, Sadow P, Faquin W, Micevic G, Daniels A, Haddad R, Garris C, Pittet M, Mempel T, ONeill A, Sartor M, Pai S. Epigenetic therapy sensitizes anti–PD-1 refractory head and neck cancers to immunotherapy rechallenge. Journal Of Clinical Investigation 2025, 135: e181671. PMID: 40091844, PMCID: PMC11910227, DOI: 10.1172/jci181671.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedAntineoplastic Combined Chemotherapy ProtocolsAzacitidineB7-H1 AntigenEpigenesis, GeneticFemaleHead and Neck NeoplasmsHumansImmune Checkpoint InhibitorsImmunotherapyMaleMiddle AgedProgrammed Cell Death 1 ReceptorSquamous Cell Carcinoma of Head and NeckTumor MicroenvironmentConceptsHead and neck squamous cell carcinomaTumor microenvironmentProlonged OSOverall survivalIFN-gCD8+ T cell infiltrationCD4+ T regulatory cellsOn-treatment tumor biopsiesNeck squamous cell carcinomaSystemic host immune responseBackgroundImmune checkpoint blockadeMetastatic (R/MMedian overall survivalPD-L1 expressionT cell infiltrationLocal tumor microenvironmentT regulatory cellsSquamous cell carcinomaBiologically effective dosePhase 1b clinical trialHost immune responseCheckpoint blockadeOS ratesPD-L1Tumor biopsiesPD-1H (VISTA) expression in cutaneous squamous cell carcinoma is correlated with T cell infiltration and activation
Kidacki M, Cho C, Lopez-Giraldez F, Huang B, He J, Gaule P, Chen L, Vesely M. PD-1H (VISTA) expression in cutaneous squamous cell carcinoma is correlated with T cell infiltration and activation. Journal Of Investigative Dermatology 2025 PMID: 39983979, DOI: 10.1016/j.jid.2025.01.030.Peer-Reviewed Original ResearchCutaneous squamous cell carcinomaPD-L1 expressionT cell infiltrationPD-L1Squamous cell carcinomaVISTA expressionPD-1HCell carcinomaT cellsBlockade of PD-1Proliferation marker Ki-67Multiplexed quantitative immunofluorescencePD-L1 coexpressionTreatment of cutaneous squamous cell carcinomaControl T cellsPreclinical cancer studiesMyeloid cell functionImmunosuppressive microenvironmentPD-1Receptor antagonismKi-67Individual tumorsGranzyme B.Clinical trialsCancer clinical trialsMultiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy
Zhang F, Chow R, He E, Dong C, Xin S, Mirza D, Feng Y, Tian X, Verma N, Majety M, Zhang Y, Wang G, Chen S. Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. Nature Biotechnology 2025, 1-14. PMID: 39820813, DOI: 10.1038/s41587-024-02535-2.Peer-Reviewed Original ResearchAdeno-associated virusTumor microenvironmentImmunosuppressive genesAntitumor efficacyCD8+ T cell infiltrationIn vivo antitumor efficacyCombinatorial cancer immunotherapyImmunosuppressive tumor microenvironmentSyngeneic tumor modelsT cell infiltrationTumor microenvironment remodelingMulti-agent combinationsMultiple tumor typesAntitumor immunityCombinatorial immunotherapyOptimal immunotherapyCancer immunotherapyGene alterationsTumor typesTumor modelReduced neutrophilLiver toxicityShRNA treatmentWhole-transcriptome profilingImmunotherapy
2024
Molecular MRI of T-cell immune response to cryoablation in immunologically hot vs. cold hepatocellular carcinoma
Santana J, Shewarega A, Nam D, Duncan J, Madoff D, Hyder F, Coman D, Chapiro J. Molecular MRI of T-cell immune response to cryoablation in immunologically hot vs. cold hepatocellular carcinoma. JHEP Reports 2024, 7: 101294. PMID: 40028344, PMCID: PMC11870164, DOI: 10.1016/j.jhepr.2024.101294.Peer-Reviewed Original ResearchT cell infiltrationHepatocellular carcinomaRadiological-pathological correlationImaging mass cytometryImmune responseT1-weighted MRITumor-infiltrating CD8+ T lymphocytesAnti-tumor immune responseCD8+ T lymphocytesIncreased T lymphocyte infiltrationImaging biomarkersNon-immunogenic tumorsSystemic lymph nodesT lymphocyte infiltrationMurine tumor modelsImmune cell typesLocal tumor therapyPrimary liver cancerNon-invasive imaging biomarkerTesla MRI scannerInduce liver cirrhosisImmunogenic tumorsLocoregional therapySystemic immunotherapyHCC lesionsSetdb1 Loss Induces Type I Interferons and Immune Clearance of Melanoma.
McGeary M, Damsky W, Daniels A, Lang S, Xu Q, Song E, Huet-Calderwood C, Lou H, Paradkar S, Micevic G, Kaech S, Calderwood D, Turk B, Yan Q, Iwasaki A, Bosenberg M. Setdb1 Loss Induces Type I Interferons and Immune Clearance of Melanoma. Cancer Immunology Research 2024, 13: 245-257. PMID: 39589394, DOI: 10.1158/2326-6066.cir-23-0514.Peer-Reviewed Original ResearchT cell infiltrationMHC-I expressionType I interferonImmune clearanceCD8+ T cell-dependent mannerIncreased CD8+ T cell infiltrationCD8+ T cell infiltrationDecreased MHC-I expressionAnti-cancer immune responseT cell-dependent mannerCD8+ T cellsDecreased T-cell infiltrationComplete tumor clearanceImmunity to melanomaIncreased melanoma growthInflamed tumor microenvironmentLoss of SETDB1Type I interferon receptorTreatment of melanomaType I interferon signalingWhole-genome CRISPR screenEndogenous retrovirusesType I interferon expressionMetastatic diseaseTumor clearanceA multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features
Klughammer J, Abravanel D, Segerstolpe Å, Blosser T, Goltsev Y, Cui Y, Goodwin D, Sinha A, Ashenberg O, Slyper M, Vigneau S, Jané‐Valbuena J, Alon S, Caraccio C, Chen J, Cohen O, Cullen N, DelloStritto L, Dionne D, Files J, Frangieh A, Helvie K, Hughes M, Inga S, Kanodia A, Lako A, MacKichan C, Mages S, Moriel N, Murray E, Napolitano S, Nguyen K, Nitzan M, Ortiz R, Patel M, Pfaff K, Porter C, Rotem A, Strauss S, Strasser R, Thorner A, Turner M, Wakiro I, Waldman J, Wu J, Gómez Tejeda Zañudo J, Zhang D, Lin N, Tolaney S, Winer E, Boyden E, Chen F, Nolan G, Rodig S, Zhuang X, Rozenblatt-Rosen O, Johnson B, Regev A, Wagle N. A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features. Nature Medicine 2024, 30: 3236-3249. PMID: 39478111, PMCID: PMC11564109, DOI: 10.1038/s41591-024-03215-z.Peer-Reviewed Original ResearchClinicopathological featuresLocal T cell infiltrationT cell infiltrationMetastatic breast cancerBreast cancer biopsiesCancer-related deathsEpithelial-to-mesenchymal transitionMetastatic diseaseClinically relevant discoveriesTumor biopsiesTumor microenvironmentCancer biopsiesBreast cancerAnatomical sitesMacrophage populationsSingle-nucleus RNA sequencingBiopsyH&E stainingConsecutive serial sectionsClinical annotationTumorSingle-cellSpatial expression characteristicsSerial sectionsCell type compositionPhase I PIANO trial—PIPAC-oxaliplatin and systemic nivolumab combination for gastric cancer peritoneal metastases: clinical and translational outcomes
Sundar R, Chia D, Zhao J, Lee A, Kim G, Tan H, Pang A, Shabbir A, Willaert W, Ma H, Huang K, Hagihara T, Tan A, Ong C, Wong J, Seo C, Walsh R, Chan G, Cheo S, Soh C, Callebout E, Geboes K, Ng M, Lum J, Leow W, Selvarajan S, Hoorens A, Ang W, Pang H, Tan P, Yong W, Chia C, Ceelen W, So J. Phase I PIANO trial—PIPAC-oxaliplatin and systemic nivolumab combination for gastric cancer peritoneal metastases: clinical and translational outcomes. ESMO Open 2024, 9: 103681. PMID: 39288528, PMCID: PMC11421236, DOI: 10.1016/j.esmoop.2024.103681.Peer-Reviewed Original ResearchConceptsGastric cancer peritoneal metastasisPeritoneal cancer indexNivolumab combinationPeritoneal metastasisPeritoneal tumorsNaive CD8+ T cellsCD8+ central memoryEnhanced T cell infiltrationTreatment-related adverse eventsCD8+ T cellsGrade 4 vomitingRegression grade 1First-in-human trialImmune checkpoint inhibitionMemory CD4+T cell infiltrationImmunogenic cell deathSystemic immunotherapyCheckpoint inhibitionSystemic therapyCancer indexCD4+Intraperitoneal treatmentT cellsAdverse eventsNeuromedin U receptor 1 deletion leads to impaired immunotherapy response and high malignancy in colorectal cancer
Zhou Y, Zhang X, Gao Y, Peng Y, Liu P, Chen Y, Guo C, Deng G, Ouyang Y, Zhang Y, Han Y, Cai C, Shen H, Gao L, Zeng S. Neuromedin U receptor 1 deletion leads to impaired immunotherapy response and high malignancy in colorectal cancer. IScience 2024, 27: 110318. PMID: 39055918, PMCID: PMC11269305, DOI: 10.1016/j.isci.2024.110318.Peer-Reviewed Original ResearchNeuromedin U receptor 1Colorectal cancerCytotoxic T-lymphocyte-associated protein 4CD8<sup>+</sup> T cell infiltrationCD8<sup>+</sup> T cellsLymphocyte activation gene-3Improve immunotherapy outcomesT cell infiltrationComprehensive multi-omics analysisPersonalized immunotherapy strategiesPatient-derived tissuesColorectal cancer cell linesColorectal cancer treatmentImmunotherapy outcomesImmune checkpointsImmunotherapy efficacyImmunotherapy strategiesImmunotherapy responsePrognostic significanceImmune infiltrationT cellsMulti-omics analysisCell infiltrationGenetic alterationsHigh malignancyInvestigation of T cell phenotypes associated with response or resistance to immune checkpoint inhibitors (ICI) through single-cell analysis of renal cell carcinoma (RCC).
Kashima S, Ye Z, Meliki A, Hugaboom M, Schindler N, Graham J, Moritz V, El Ahmar N, Nabil Laimon Y, Canniff J, Saliby R, Lee G, Machaalani M, Sun M, Xu W, Signoretti S, McGregor B, McKay R, CHOUEIRI T, Braun D. Investigation of T cell phenotypes associated with response or resistance to immune checkpoint inhibitors (ICI) through single-cell analysis of renal cell carcinoma (RCC). Journal Of Clinical Oncology 2024, 42: 4515-4515. DOI: 10.1200/jco.2024.42.16_suppl.4515.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsRenal cell carcinomaCD8+ T cell infiltrationT cell infiltrationNon-respondersTumor microenvironmentT cellsRCC tumor microenvironmentResistance to immune checkpoint inhibitorsICI responseImmune checkpoint inhibitor treatmentImmune checkpoint inhibitor efficacyCD8+ T cellsExpressed PD-1ICI-treated patientsGene programGene signature scoresTumor mutation loadCellular compositionGene expression signaturesSingle-cell transcriptome analysisCheckpoint inhibitorsPD-1Partial responseSystemic therapyIntratumoral T-cell infiltration and response to nivolumab plus ipilimumab in patients with metastatic clear cell renal cell carcinoma from the CheckMate-214 trial.
Matar S, Jegede O, Denize T, Ghandour F, Nabil Laimon Y, El Ahmar N, Bagheri Sheshdeh A, Savla V, Mohanna R, Catalano P, Braun D, Sun M, Gupta S, Vemula S, Freeman G, Motzer R, Atkins M, McDermott D, CHOUEIRI T, Signoretti S. Intratumoral T-cell infiltration and response to nivolumab plus ipilimumab in patients with metastatic clear cell renal cell carcinoma from the CheckMate-214 trial. Journal Of Clinical Oncology 2024, 42: 4536-4536. DOI: 10.1200/jco.2024.42.16_suppl.4536.Peer-Reviewed Original ResearchProgression-free survivalAssociated with progression-free survivalMultiplex immunofluorescenceClinical trialsClinical outcomesMetastatic clear cell renal cell carcinomaIntratumoral T cell infiltrationTreated with nivolumab monotherapyMetastatic clear cell RCCClear cell renal cell carcinomaResponse to nivolumabT cell infiltrationCell renal cell carcinomaPoor-risk patientsRenal cell carcinomaClear cell RCCFormalin fixed paraffinContinuous variablesNivolumab monotherapyCox proportional hazardsAntigen-experiencedCell RCCCell carcinomaLogistic regression modelsPositive associationAssociation of CD8 T cell infiltration in the tumor microenvironment with survival outcomes in patients with metastatic renal cell carcinoma (mRCC).
Goswamy R, Yildirim A, Wei M, Liu Y, Choi Y, Brown J, Nazha B, Master V, Martini D, Carthon B, Harris W, Kucuk O, Kissick H, Hartman C, McClintock G, Vo B, Jansen C, Zhuang T, Bilen M. Association of CD8 T cell infiltration in the tumor microenvironment with survival outcomes in patients with metastatic renal cell carcinoma (mRCC). Journal Of Clinical Oncology 2024, 42: e16527-e16527. DOI: 10.1200/jco.2024.42.16_suppl.e16527.Peer-Reviewed Original ResearchCD8 T cell infiltrationMetastatic renal cell carcinomaProgression-free survivalT cell infiltrationCD8 T cellsCheckpoint inhibitorsOverall survivalTyrosine kinase inhibitorsT cellsSystemic therapyTumor microenvironmentMetastatic renal cell carcinoma patientsAssociated with favorable clinical outcomesProgression-free survival outcomesRetrospective analysis of patientsCombination checkpoint inhibitorsIntratumoral T cellsProgression free survivalImproved overall survivalFavorable clinical outcomesWinship Cancer InstituteKaplan Meier analysisAnalysis of patientsRenal cell carcinomaCox proportional hazards modelsARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity
Maxwell M, Hom-Tedla M, Yi J, Li S, Rivera S, Yu J, Burns M, McRae H, Stevenson B, Coakley K, Ho J, Gastelum K, Bell J, Jones A, Eskander R, Dykhuizen E, Shadel G, Kaech S, Hargreaves D. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 2024, 187: 3390-3408.e19. PMID: 38754421, PMCID: PMC11193641, DOI: 10.1016/j.cell.2024.04.025.Peer-Reviewed Original ResearchImmune checkpoint blockadeAnti-tumor immunityIncreased CD8+ T cell infiltrationCD8+ T cell infiltrationT cell infiltrationType I IFN signalingGene expression signaturesICB treatmentCheckpoint blockadeIndependent of microsatellite instabilityARID1A mutationsCytolytic activityImmune phenotypeMurine modelCell infiltrationARID1A lossClinical trialsMutant cancersARID1AHuman cancersExpression signaturesGene upregulationMicrosatellite instabilityCancerInterferonTumor expressed BCAM impedes anti-tumor T cell immunity and can be targeted therapeutically
Flies D, Tian L, O'Neill R, Fitzgerald D, Sharee S, Shaik J, Bosiacki J, Paucarmayta A, Prajapati K, Langermann S, Mrass P. Tumor expressed BCAM impedes anti-tumor T cell immunity and can be targeted therapeutically. The Journal Of Immunology 2024, 212: 0517_5466-0517_5466. DOI: 10.4049/jimmunol.212.supp.0517.5466.Peer-Reviewed Original ResearchAnti-tumor immunityT cell immunityCytotoxic T cellsTumor microenvironmentT cellsTumor growthAnti-tumor T cell immunityT cell anti-tumor immunityExclusion of T cellsIncreased T-cell infiltrationRegulating T cell immunityHuman T cell functionT cell infiltrationInhibitor of T cell proliferationT cell suppressionHuman tumors in vitroT cell functionReduced tumor growthT cell proliferationDecreased tumor growthTumors in vitroTumor growth in vivoCancer escapeCheckpoint inhibitorsGrowth in vivoUp-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris P, Pearson M, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely M, Zhang Y, Zhang J, Ji L, Flies D, Liu L, Langermann S, LaRochelle W, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper K, Sanmamed M, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Science Immunology 2024, 9: eadh2334. PMID: 38669316, DOI: 10.1126/sciimmunol.adh2334.Peer-Reviewed Original ResearchConceptsT cell infiltrationT cell exclusionT cellsResistance to anti-PD-1 immunotherapyPoor T-cell infiltrationAnti-PD-1 immunotherapyImmunogenic mouse tumorsT cell mobilizationHuman cancer tissuesTherapeutic immunotherapyCancer immunotherapyMouse tumorsChemokine systemImmunotherapyTumor tissuesImpaired infiltrationTumorLipid metabolitesHuman cancersCancer tissuesInfiltrationA2 groupCancerPLA2G10Up-regulatedRandomized Phase II Trial of Imiquimod with or without 9-Valent HPV Vaccine versus Observation in Patients with High-grade Pre-neoplastic Cervical Lesions (NCT02864147)
Sheth S, Oh J, Bellone S, Siegel E, Greenman M, Mutlu L, McNamara B, Pathy S, Clark M, Azodi M, Altwerger G, Andikyan V, Huang G, Ratner E, Kim D, Iwasaki A, Levi A, Buza N, Hui P, Flaherty S, Schwartz P, Santin A. Randomized Phase II Trial of Imiquimod with or without 9-Valent HPV Vaccine versus Observation in Patients with High-grade Pre-neoplastic Cervical Lesions (NCT02864147). Clinical Cancer Research 2024, 30: of1-of10. PMID: 38592381, DOI: 10.1158/1078-0432.ccr-23-3639.Peer-Reviewed Original ResearchConceptsRandomized phase II trialCD4/CD8 T cellsT cellsHPV clearanceArm BNo significant differenceClinical surveillanceRate of HPV clearanceSecondary outcomesPre-neoplastic cervical lesionsCervical intraepithelial neoplasiaT cell infiltrationT cell responsesSignificant differenceCIN3 patientsIntraepithelial neoplasiaArm ACervical lesionsImiquimod groupSurveillance armVaginal suppositoriesProspective trialsArm CHPV vaccinationImiquimodEffect of Incomplete Cryoablation and Matrix Metalloproteinase Inhibition on Intratumoral CD8+ T-Cell Infiltration in Murine Hepatocellular Carcinoma.
Shewarega A, Santana J, Nam D, Berz A, Tefera J, Kahl V, Mishra S, Coman D, Duncan J, Roberts S, Wetter A, Madoff D, Chapiro J. Effect of Incomplete Cryoablation and Matrix Metalloproteinase Inhibition on Intratumoral CD8+ T-Cell Infiltration in Murine Hepatocellular Carcinoma. Radiology 2024, 310: e232365. PMID: 38349244, PMCID: PMC10902598, DOI: 10.1148/radiol.232365.Peer-Reviewed Original ResearchConceptsT cell infiltrationCD8<sup>+</sup> T cellsMatrix metalloproteinase inhibitionT cellsHepatocellular carcinomaMatrix metalloproteinase inhibitorsMatrix metalloproteinasesResidual tumorCXCR3<sup>+</sup> CD8<sup>+</sup> T cellsCytotoxic CD8<sup>+</sup> T cell infiltrationIntratumoral CD8+ T cell infiltrationCD8+ T cell infiltrationCD8<sup>+</sup> T cell infiltrationMouse model of hepatocellular carcinomaEarly-stage hepatocellular carcinomaImage-guided tumor ablationUnpaired Student's <i>t</i> testModel of hepatocellular carcinomaFirst-line therapyMurine hepatocellular carcinomaT cell subsetsTumor-associated macrophagesMurine HCC modelLocal immune responseFemale BALB/c miceTumor-infiltrating CD163-positive macrophages and clinical outcomes to first-line nivolumab therapy in patients with advanced clear cell renal cell carcinoma (ccRCC) enrolled in the HCRN GU16-260 trial.
El Ahmar N, Matar S, Jegede O, Nabil Laimon Y, Savla V, Bagheri Sheshdeh A, Denize T, Mohanna R, Choueiri T, Catalano P, Braun D, Haas N, Hammers H, Bilen M, Stein M, Sosman J, Wu C, McDermott D, Atkins M, Signoretti S. Tumor-infiltrating CD163-positive macrophages and clinical outcomes to first-line nivolumab therapy in patients with advanced clear cell renal cell carcinoma (ccRCC) enrolled in the HCRN GU16-260 trial. Journal Of Clinical Oncology 2024, 42: 448-448. DOI: 10.1200/jco.2024.42.4_suppl.448.Peer-Reviewed Original ResearchClear cell renal cell carcinomaProgression-free survivalCD163-positive macrophagesTumor areaNivolumab therapyDensity of CD163-positive cellsCD8+ T cell infiltrationAssociated with progression-free survivalResponse to immune checkpoint inhibitorsAdvanced clear cell renal cell carcinomaAnti-PD-1 therapyTumor-infiltrating myeloid cellsProgression-free survival endpointAssociated with poor outcomesFirst-line nivolumabImmune checkpoint inhibitorsMyeloid cell infiltrationT cell infiltrationCell renal cell carcinomaRenal cell carcinomaPrimary tumor tissuesCD163-positive cellsCheckpoint inhibitorsCox proportional hazardsCell carcinoma
2023
The epigenetic evolution of glioma is determined by the IDH1 mutation status and treatment regimen
Malta T, Sabedot T, Morosini N, Datta I, Garofano L, Vallentgoed W, Varn F, Aldape K, D'Angelo F, Bakas S, Barnholtz-Sloan J, Gan H, Hasanain M, Hau A, Johnson K, Cazacu S, deCarvalho A, Khasraw M, Kocakavuk E, Kouwenhoven M, Migliozzi S, Niclou S, Niers J, Ormond D, Paek S, Reifenberger G, Smitt P, Smits M, Stead L, van den Bent M, Van Meir E, Walenkamp A, Weiss T, Weller M, Westerman B, Ylstra B, Wesseling P, Lasorella A, French P, Poisson L, Woehrer A, Lowman A, deCarvalho A, Castro A, Transou A, Brodbelt A, Hau A, Lasorella A, Golebiewska A, Walenkamp A, Molinaro A, Iavarone A, Ismail A, Westerman B, Ylstra B, Bock C, Ormond D, Brat D, Kocakavuk E, Van Meir E, Barthel F, Varn F, D'Angelo F, Finocchiaro G, Rao G, Zadeh G, Reifenberger G, ngNg H, Kim H, Noushmehr H, Miletic H, Gan H, Datta I, Rock J, Snyder J, Huse J, Connelly J, Barnholtz-Sloan J, Niers J, deGroot J, Akdemir K, Kannan K, Ligon K, Aldape K, Bulsara K, Johnson K, Alfaro K, Poisson L, Garofano L, Stead L, Nasrallah M, Smits M, van den Bent M, Kouwenhoven M, Weller M, Hasanain M, Khasraw M, Gould P, Smitt P, LaViolette P, Tatman P, Wesseling P, French P, Beroukhim R, Verhaak R, Migliozzi S, Niclou S, Bakas S, Kalkanis S, Paek S, Short S, Ghazaleh T, Malta T, Sabedot T, Weiss T, Walbert T, Baid U, Vallentgoed W, Yung W, Verhaak R, Iavarone A, Noushmehr H. The epigenetic evolution of glioma is determined by the IDH1 mutation status and treatment regimen. Cancer Research 2023, 84: 741-756. PMID: 38117484, PMCID: PMC10911804, DOI: 10.1158/0008-5472.can-23-2093.Peer-Reviewed Original ResearchConceptsIDHmut gliomasIDHmut tumorsIDHwt gliomasResponse to therapeutic pressureGenes associated with tumor progressionT cell infiltrationLevels of global methylationIDH1 mutation statusAssociated with survivalDNA methylationLoss of DNA methylationGenome-wide DNA methylationRecurrent tumorsIncreased neoangiogenesisMutation statusIDH-wildtypeTherapy resistanceHistological progressionTherapeutic pressureLevel of genome-wide DNA methylationTumor microenvironmentT cellsTreatment regimenTumor adaptationIDH-mutantMediport use as an acceptable standard for CAR T cell infusion
Eylon M, Prabhu S, John S, King M, Bhatt D, Curran K, Erickson C, Karras N, Phillips C, Satwani P, Hermiston M, Southworth E, Baumeister S, Talano J, MacMillan M, Rossoff J, Bonifant C, Myers G, Rouce R, Toner K, Driscoll T, Katsanis E, Salzberg D, Schiff D, De Oliveira S, Capitini C, Pacenta H, Pfeiffer T, Shah N, Huynh V, Skiles J, Fraint E, McNerney K, Quigg T, Krueger J, Ligon J, Fabrizio V, Baggott C, Laetsch T, Schultz L. Mediport use as an acceptable standard for CAR T cell infusion. Frontiers In Immunology 2023, 14: 1239132. PMID: 37965315, PMCID: PMC10642031, DOI: 10.3389/fimmu.2023.1239132.Peer-Reviewed Original ResearchCAR T-cell infusionT-cell infusionCell infusionT-cell therapyCell infiltrationClinical practiceChimeric antigen receptor T-cell therapyCAR T-cell therapyCAR-T cell infiltrationCell therapyCell therapy administrationRetrospective cohort studyCentral venous cathetersT cell infiltrationCurrent clinical practiceStandard clinical practiceB-cell malignanciesT cell deliveryEvaluable patientsVenous optionsCohort studyVenous cathetersTherapy administrationPractice patternsCare recommendations
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply