2025
Olfactory bulb interneurons – The developmental timeline and targeting defined by embryonic neurogenesis
Spence N, Martin-Lopez E, Han K, Lefèvre M, Lange N, Brennan B, Greer C. Olfactory bulb interneurons – The developmental timeline and targeting defined by embryonic neurogenesis. Molecular And Cellular Neuroscience 2025, 133: 104007. PMID: 40122272, DOI: 10.1016/j.mcn.2025.104007.Peer-Reviewed Original ResearchGranule cell layerOB interneuronsOlfactory bulbRostral migratory streamEmbryonic interneuronsOlfactory bulb interneuronsMouse olfactory bulbSuperficial granule cell layerLateral ganglionic eminenceOlfactory system functionThymidine analogFormation of circuitsMaternal injectionApical dendritesGanglionic eminenceProgenitor cellsE11-E13Tyrosine hydroxylaseEmbryonic dayInterneuronsMigratory streamPlexiform layerUtero electroporationCell layerEmbryonic neurogenesisEngineering Mice to Study Human Immunity.
Sefik E, Xiao T, Chiorazzi M, Odell I, Zhang F, Agrawal K, Micevic G, Flavell R. Engineering Mice to Study Human Immunity. Annual Review Of Immunology 2025 PMID: 40020225, DOI: 10.1146/annurev-immunol-082523-124415.Peer-Reviewed Original ResearchHumanized miceHuman hematopoiesisImmune responseImmune systemHumanized mouse modelHuman hematopoietic stemImmunocompromised murine hostsResident immune cellsHuman immune responseStudy human immunityHuman immune systemIntegration of multi-omicsHematopoietic stemImmune cell growthImmune cellsEngineered miceProgenitor cellsMouse modelImmunological diseasesMurine hostCancer treatmentPreclinical drugsHuman immunityMiceModel diseasePTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors
DeSpenza T, Kiziltug E, Allington G, Barson D, McGee S, O’Connor D, Robert S, Mekbib K, Nanda P, Greenberg A, Singh A, Duy P, Mandino F, Zhao S, Lynn A, Reeves B, Marlier A, Getz S, Nelson-Williams C, Shimelis H, Walsh L, Zhang J, Wang W, Prina M, OuYang A, Abdulkareem A, Smith H, Shohfi J, Mehta N, Dennis E, Reduron L, Hong J, Butler W, Carter B, Deniz E, Lake E, Constable R, Sahin M, Srivastava S, Winden K, Hoffman E, Carlson M, Gunel M, Lifton R, Alper S, Jin S, Crair M, Moreno-De-Luca A, Luikart B, Kahle K. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nature Neuroscience 2025, 28: 536-557. PMID: 39994410, DOI: 10.1038/s41593-024-01865-3.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsCongenital hydrocephalusCSF dynamicsIncreased CSF productionDe novo mutationsFrequent monogenic causeEverolimus treatmentCSF shuntingNonsurgical treatmentPTEN mutationsAqueductal stenosisInhibitory interneuronsVentriculomegalyProgenitor cellsChoroid plexusMonogenic causeCortical networksIncreased survivalBrain ventriclesCortical deficitsNeural progenitorsGene PTENCSF productionNkx2.1PTEN
2024
Activation of mechanoreceptor Piezo1 inhibits enteric neuronal growth and migration in vitro
Moneme C, Olutoye O, Sobstel M, Zhang Y, Zhou X, Kaminer J, Hsu B, Shen C, Mandal A, Li H, Yu L, Balaji S, Keswani S, Cheng L. Activation of mechanoreceptor Piezo1 inhibits enteric neuronal growth and migration in vitro. Frontiers In Molecular Neuroscience 2024, 17: 1474025. PMID: 39759870, PMCID: PMC11695422, DOI: 10.3389/fnmol.2024.1474025.Peer-Reviewed Original ResearchEnteric nervous systemEnteric neuronsNeuronal migrationNeural crest-derived progenitor cellsPiezo1 activationNeuronal growthPiezo1 inhibitionENS dysfunctionNeurite lengthMigration in vitroPiezo1 agonistPiezo1 antagonistProgenitor cellsNeuronal phenotypeNeuronal recoveryMechanosensitive ion channelsGI functionPiezo1 expressionAdult mouse intestineGI tractMouse intestineNervous systemIon channelsNeuronal morphologyNeuronsThe dynamics of hematopoiesis over the human lifespan
Li H, Côté P, Kuoch M, Ezike J, Frenis K, Afanassiev A, Greenstreet L, Tanaka-Yano M, Tarantino G, Zhang S, Whangbo J, Butty V, Moiso E, Falchetti M, Lu K, Connelly G, Morris V, Wang D, Chen A, Bianchi G, Daley G, Garg S, Liu D, Chou S, Regev A, Lummertz da Rocha E, Schiebinger G, Rowe R. The dynamics of hematopoiesis over the human lifespan. Nature Methods 2024, 22: 422-434. PMID: 39639169, PMCID: PMC11908799, DOI: 10.1038/s41592-024-02495-0.Peer-Reviewed Original ResearchConceptsHematopoietic stem cellsHematopoietic stemProgenitor cellsClassification of acute myeloid leukemiaDifferentiation of hematopoietic stem cellsAssociated with poor prognosisAcute myeloid leukemiaHuman hematopoietic stemWave of hematopoiesisGene expression networksMyeloid leukemiaPoor prognosisLineage outputMultilineage capacityDynamics of hematopoiesisCell ontogenyStem cellsLineage primingFate decisionsModel organismsTranscriptomic statesExpression networksHuman lifespanTranscriptional programsHematopoiesisHEXIM1 Regulates Early Erythropoiesis and Participates in Multiple Complexes in Erythroid Cells
Rahman N, Abid D, Lv X, Murphy K, Getman M, McGrath K, Gallagher P, Narla M, Blanc L, Palis J, Mello S, Steiner L. HEXIM1 Regulates Early Erythropoiesis and Participates in Multiple Complexes in Erythroid Cells. Blood 2024, 144: 536. DOI: 10.1182/blood-2024-209259.Peer-Reviewed Original ResearchRNA polymerase IIErythroid gene expressionGene expressionTerminal erythroid maturationEarly erythropoiesisErythroid cellsErythroid maturationRegulation of gene expressionProgenitor cellsImpaired erythroid differentiationRNAPII pausingGenomic contextPolymerase IIRepress transcriptionSteady-state erythropoiesisErythroid progenitor cellsCD34+ HSPCsRegulatory domainBinding partnersErythropoiesis in vivoBlood cell countColony-forming cellsLow red blood cell countSubnuclear bodiesErythroid progenitor differentiationHematopoietic Stem Cells Supporting Fetal Erythropoiesis Are Differentially Regulated By Small and Large Ribosomal Subunits
Tang Y, Ling T, Mehmood R, Khan M, Papoin J, Palis J, Steiner L, Durand S, Zon L, Bhoopalan S, Weiss M, Lipton J, Taylor N, Gallagher P, Narla M, Crispino J, Blanc L. Hematopoietic Stem Cells Supporting Fetal Erythropoiesis Are Differentially Regulated By Small and Large Ribosomal Subunits. Blood 2024, 144: 195. DOI: 10.1182/blood-2024-210699.Peer-Reviewed Original ResearchDiamond-Blackfan anemiaHaplo-insufficient miceFetal hematopoiesisHematopoietic stemBFU-EProgenitor cellsCongenital bone marrow failure syndromeMouse modelClinically relevant mouse modelBone marrow failure syndromesProtein haploinsufficiencyBasophilic erythroblastsMarrow failure syndromesBone marrow failureFetal liver cellsRelevant mouse modelConsistent with clinical findingsPost-natal dayConditional mouse modelErythroid lineage cellsRibosomal protein haploinsufficiencyAssociated with mutationsExpression of RUNX1BFU-E stageRUNX1 alleleMechanistic Investigation of Human DPP9 Deficiency
Xiao T, Brewer J, Zhou L, Han A, Takabe Y, Carlino M, Blackburn H, Flavell R. Mechanistic Investigation of Human DPP9 Deficiency. Blood 2024, 144: 5699-5699. DOI: 10.1182/blood-2024-211123.Peer-Reviewed Original ResearchHuman HSPCsDevelopment of human immune systemHuman NLRP1Loss of hematopoietic cellsHumanized mouse modelHuman hematopoietic stemStem cells in vivoSensors of infectionLaboratory mouse strainsCells in vivoHuman immune systemMouse genomeHematopoietic stemHuman hematopoiesisHematopoietic cellsCellular stressNegative regulatorPancytopeniaProgenitor cellsMouse strainsRegulatory pathwaysMouse modelHSPCsImmune systemDeletionComparative single-cell multiome identifies evolutionary changes in neural progenitor cells during primate brain development
Liu Y, Luo X, Sun Y, Chen K, Hu T, You B, Xu J, Zhang F, Cheng Q, Meng X, Yan T, Li X, Qi X, He X, Guo X, Li C, Su B. Comparative single-cell multiome identifies evolutionary changes in neural progenitor cells during primate brain development. Developmental Cell 2024, 60: 414-428.e8. PMID: 39481377, DOI: 10.1016/j.devcel.2024.10.005.Peer-Reviewed Original ResearchEvolutionary changesDistal regulatory elementsGene regulatory mechanismsExtracellular matrixSingle-cell multiomicsProgenitor cellsTranscriptional divergenceEvolutionary divergenceChromatin regionsChromatin accessibilityNeural progenitorsRegulatory elementsSequence changesTranscriptional rewiringGenetic mechanismsMouse prefrontal cortexRegulatory mechanismsPrefrontal cortexHuman neural progenitorsHuman-specific featuresUpper-layer neuronsNeural progenitor cellsChromatinCellular propertiesProgenitor proliferationAplastic anemia in association with multiple myeloma: clinical and pathophysiological insights
Muradashvili T, Liu Y, VanOudenhove J, Gu S, Krause D, Montanari F, Carlino M, Mancuso R, Stempel J, Halene S, Zeidan A, Podoltsev N, Neparidze N. Aplastic anemia in association with multiple myeloma: clinical and pathophysiological insights. Leukemia & Lymphoma 2024, 65: 2182-2189. PMID: 39225418, DOI: 10.1080/10428194.2024.2393260.Peer-Reviewed Original ResearchAplastic anemiaMultiple myelomaImmunosuppressive therapyTransfusion requirementsProgenitor cellsPlasma cell-directed therapyT-cell destructionCell-directed therapiesInhibition of erythroid colony formationErythroid colony formationLevels of IL8Severe AAImmune cytopeniasPartial responseMM patientsHematopoietic stemSerum testsPartial improvementPathophysiological insightsPatientsImmune systemPlatelet apoptosisCytopeniasColony formationMyelomaStem cells tightly regulate dead cell clearance to maintain tissue fitness
Stewart K, Abdusselamoglu M, Tierney M, Gola A, Hur Y, Gonzales K, Yuan S, Bonny A, Yang Y, Infarinato N, Cowley C, Levorse J, Pasolli H, Ghosh S, Rothlin C, Fuchs E. Stem cells tightly regulate dead cell clearance to maintain tissue fitness. Nature 2024, 633: 407-416. PMID: 39169186, PMCID: PMC11390485, DOI: 10.1038/s41586-024-07855-6.Peer-Reviewed Original ResearchStem cellsImmune-privileged nicheHair follicle stem cellsStem cell functionFollicle stem cellsTissue fitnessMesenchymal tissue cellsBillions of cellsDendritic cellsTissue stemProgenitor cellsPreserving tissue integrityDead cell clearanceClearance genesCell clearanceCell functionFunctional evidenceDying cellsHealthy counterpartsCell deathNon-motileTissue cellsHair cycleProfessional phagocytesApoptotic corpsesDysregulation of FLVCR1a-dependent mitochondrial calcium handling in neural progenitors causes congenital hydrocephalus
Bertino F, Mukherjee D, Bonora M, Bagowski C, Nardelli J, Metani L, Venturini D, Chianese D, Santander N, Salaroglio I, Hentschel A, Quarta E, Genova T, McKinney A, Allocco A, Fiorito V, Petrillo S, Ammirata G, De Giorgio F, Dennis E, Allington G, Maier F, Shoukier M, Gloning K, Munaron L, Mussano F, Salsano E, Pareyson D, di Rocco M, Altruda F, Panagiotakos G, Kahle K, Gressens P, Riganti C, Pinton P, Roos A, Arnold T, Tolosano E, Chiabrando D. Dysregulation of FLVCR1a-dependent mitochondrial calcium handling in neural progenitors causes congenital hydrocephalus. Cell Reports Medicine 2024, 5: 101647. PMID: 39019006, PMCID: PMC11293339, DOI: 10.1016/j.xcrm.2024.101647.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusCalcium handlingNeural progenitor cellsMitochondrial calcium handlingMouse neural progenitor cellsFLVCR1 geneMitochondrial calcium levelsVentricular dilatationLive birthsCalcium levelsProgenitor cellsClinical challengeVentricle enlargementPathogenetic mechanismsSevere formCortical neurogenesisNeural progenitorsFLVCR1aMitochondria-associated membranesHydrocephalusMiceFLVCR1CH genesMolecular mechanismsMetabolic activityLateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors
Morozov Y, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cerebral Cortex 2024, 34: bhae293. PMID: 39024157, PMCID: PMC11485267, DOI: 10.1093/cercor/bhae293.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsProgenitor cellsVentricular zoneCerebral cortexBasolateral cell membraneApical anchorageProlonged neurogenesisMammalian cerebral cortexPrimary ciliaApical neural progenitorsCell membraneFraction of cellsNeural progenitorsStem cellsCerebral neurogenesisApical segmentsDevelopment of ciliaNuclear translocationMicrotubule organizing centerNeurogenesisCellsMacaque monkeysSpecies-specific differencesCortexBasal bodiesSingle-cell analysis reveals a subpopulation of adipose progenitor cells that impairs glucose homeostasis
Wang H, Du Y, Huang S, Sun X, Ye Y, Sun H, Chu X, Shan X, Yuan Y, Shen L, Bi Y. Single-cell analysis reveals a subpopulation of adipose progenitor cells that impairs glucose homeostasis. Nature Communications 2024, 15: 4827. PMID: 38844451, PMCID: PMC11156882, DOI: 10.1038/s41467-024-48914-w.Peer-Reviewed Original ResearchConceptsAdipose progenitor cellsT2D patientsProgenitor cellsDiphtheria toxin A expressionHeterogeneous stromal cellsGlycemic disturbancesAdipose tissueInfluence of obesityGlucose homeostasisVisceral adipose tissueHuman visceral adipose tissueImpaired glucose homeostasisType 2 diabetesHunter-killer peptidesRegulating glucose homeostasisSingle-cell analysisAPC functionStromal cellsA expressionMetabolic homeostasisAdipocyte lipolysisT2D developmentPatientsT2DBioactive proteinsTert-expressing cells contribute to salivary gland homeostasis and tissue regeneration after radiation therapy
Guan L, Viswanathan V, Jiang Y, Vijayakumar S, Cao H, Zhao J, Colburg D, Neuhöfer P, Zhang Y, Wang J, Xu Y, Laseinde E, Hildebrand R, Rahman M, Frock R, Kong C, Beachy P, Artandi S, Le Q. Tert-expressing cells contribute to salivary gland homeostasis and tissue regeneration after radiation therapy. Genes & Development 2024, 38: 569-582. PMID: 38997156, PMCID: PMC11293384, DOI: 10.1101/gad.351577.124.Peer-Reviewed Original ResearchConceptsSubmandibular glandSalivary gland homeostasisProgenitor cellsGland homeostasisResponse to radiotherapyAdult submandibular glandCell survivalSalivary gland regenerationSelf-renewal capacityEnhanced proliferative activityRadiation therapyDuctal regionsRadiotherapyModulate cell survivalTelomerase-expressingGland regenerationProliferative activityMouse strainsTERT expressionCreERT2 recombinaseSalivary gland biologyRadiation exposureTERT locusIn vitro cultureCell populationsTranslational Research of the Acute Effects of Negative Emotions on Vascular Endothelial Health: Findings From a Randomized Controlled Study
Shimbo D, Cohen M, McGoldrick M, Ensari I, Diaz K, Fu J, Duran A, Zhao S, Suls J, Burg M, Chaplin W. Translational Research of the Acute Effects of Negative Emotions on Vascular Endothelial Health: Findings From a Randomized Controlled Study. Journal Of The American Heart Association 2024, 13: e032698. PMID: 38690710, PMCID: PMC11179860, DOI: 10.1161/jaha.123.032698.Peer-Reviewed Original ResearchConceptsEndothelial cell-derived microparticlesEndothelium-dependent vasodilationCell-derived microparticlesEndothelial progenitor cellsGroup x time interactionEndothelial cell healthCirculating bone marrow-derived endothelial progenitor cellsIncreased risk of cardiovascular disease eventsIndex scoreEndothelial healthProgenitor cellsImpaired endothelium-dependent vasodilationRisk of cardiovascular disease eventsAcute effectsTime interactionBone marrow-derived endothelial progenitor cellsMarrow-derived endothelial progenitor cellsRecall taskStatistically significant group x time interactionsSignificant group x time interactionRandomized controlled studyCardiovascular disease eventsVascular endothelial healthRandomized controlled experimental studyNegative emotionsA novel method for culturing enteric neurons generates neurospheres containing functional myenteric neuronal subtypes
Mandal A, Moneme C, Tewari B, Goldstein A, Sontheimer H, Cheng L, Moore S, Levin D. A novel method for culturing enteric neurons generates neurospheres containing functional myenteric neuronal subtypes. Journal Of Neuroscience Methods 2024, 407: 110144. PMID: 38670535, PMCID: PMC11144385, DOI: 10.1016/j.jneumeth.2024.110144.Peer-Reviewed Original ResearchEnteric neuronsEnteric nervous systemPresence of sodium channel blockersProgenitor cellsProgenitor cell marker nestinAction potentialsNeural progenitor cell markers nestinNeural stemMyenteric plexus cellsActivate enteric neuronsCultured enteric neuronsCells expressing Sox2Differentiation culture systemSodium channel blockersMurine small intestineNeural progenitor cellsTubulin beta IIIDays of differentiationChannel blockersDifferentiated neurospheresNeuN immunofluorescenceEnteric neurospheresNeuronal subtypesMarker nestinPlexus cellsAbstract 5442: Terthighcells: key players in salivary gland homeostasis and regeneration after radiation therapy in adult mice
Guan L, Viswanathan V, V S, Cao H, Jiang Y, Zhao J, Colburg D, Neuhoefer P, Xu Y, Laseinde E, Artandi S, Le Q. Abstract 5442: Terthighcells: key players in salivary gland homeostasis and regeneration after radiation therapy in adult mice. Cancer Research 2024, 84: 5442-5442. DOI: 10.1158/1538-7445.am2024-5442.Peer-Reviewed Original ResearchSalivary gland homeostasisSubmandibular glandRadiation therapyGland homeostasisDuctal regionsAdult miceAmerican Association for Cancer Research annual meetingsProgenitor cellsAcinar cellsRadiation cell killingAdult submandibular glandCell survivalSelf-renewal capacityPost-radiotherapyPost-radiationModulate cell survivalStem/progenitor cellsNormal organsMouse strainsTERT expressionCell killingDuctal cellsOxidative stress response pathwayCreERT2 recombinaseTERT locus
2023
Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction
Zhang S, Paccalet A, Rohde D, Cremer S, Hulsmans M, Lee I, Mentkowski K, Grune J, Schloss M, Honold L, Iwamoto Y, Zheng Y, Bredella M, Buckless C, Ghoshhajra B, Thondapu V, van der Laan A, Piek J, Niessen H, Pallante F, Carnevale R, Perrotta S, Carnevale D, Iborra-Egea O, Muñoz-Guijosa C, Galvez-Monton C, Bayes-Genis A, Vidoudez C, Trauger S, Scadden D, Swirski F, Moskowitz M, Naxerova K, Nahrendorf M. Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction. Nature Cardiovascular Research 2023, 2: 1277-1290. PMID: 38344689, PMCID: PMC10857823, DOI: 10.1038/s44161-023-00388-7.Peer-Reviewed Original ResearchMyocardial infarctionFatty acid metabolismHematopoietic stem cell homeostasisEmergency hematopoiesisStem cell homeostasisAcid metabolismHematopoietic progenitor proliferationBone marrow adipocytesInflammatory myeloid cellsMyeloid cell expansionHematopoietic progenitor cellsBone marrow adiposityMitochondrial metabolismMetabolic cuesFatty acid oxidationCell homeostasisProgenitor proliferationHematopoietic cellsMarrow adipocytesAdipocyte shrinkageRegional sympathectomyHeart failureCell expansionFl miceProgenitor cellsTrained immunity induced by high‐salt diet impedes stroke recovery
Lin T, Jiang D, Chen W, Lin J, Zhang X, Chen C, Hsu C, Lai L, Chen P, Yang K, Sansing L, Chang C. Trained immunity induced by high‐salt diet impedes stroke recovery. EMBO Reports 2023, 24: e57164. PMID: 37965920, PMCID: PMC10702837, DOI: 10.15252/embr.202357164.Peer-Reviewed Original ResearchConceptsInnate immune memoryMonocyte-derived macrophagesStroke recoveryInflammatory responseBone marrowImmune memoryHigh-salt dietCause of morbidityInitial inflammatory responsePotential therapeutic targetLoss of Nr4a1Stroke outcomeStroke brainIntracerebral hemorrhageBrain recoverySterile inflammationHealthy miceTissue injurySevere formTherapeutic targetAlternative activationImmune primingReparative functionsProgenitor cellsNR4A family
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply