2025
Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Current Tools, Techniques, and Uncharted Territories.
Yusufaly T, Roncali E, Brosch-Lenz J, Uribe C, Jha A, Currie G, Dutta J, El-Fakhri G, McMeekin H, Pandit-Taskar N, Schwartz J, Shi K, Strigari L, Zaidi H, Saboury B, Rahmim A. Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Current Tools, Techniques, and Uncharted Territories. Journal Of Nuclear Medicine 2025, jnumed.124.267927. PMID: 39947910, DOI: 10.2967/jnumed.124.267927.Peer-Reviewed Original ResearchRadiopharmaceutical therapyImage-based dosimetryPrediction of doseInternal dosimetryPersonalized treatment plansMetastatic diseaseDosimetryNuclear oncologyClinical outcomesNuclear medicineClinical endpointsTreatment planningOncology communityDose responseEtiological mechanismsTargeted deliveryRadiobiologyRadiotherapyMalignancyRadiationLong-termTherapyPharmacotherapyDoseRadiopharmacokinetics
2024
Artificial Intelligence in IVF Laboratories: Elevating Outcomes Through Precision and Efficiency
Hew Y, Kutuk D, Duzcu T, Ergun Y, Basar M. Artificial Intelligence in IVF Laboratories: Elevating Outcomes Through Precision and Efficiency. Biology 2024, 13: 988. PMID: 39765654, PMCID: PMC11727220, DOI: 10.3390/biology13120988.Peer-Reviewed Original ResearchArtificial intelligenceIn vitro fertilizationPattern recognition capabilitiesHuman-machine interfaceData securityReducing human errorIn vitro fertilization laboratoryDeep learningNeural networkMachine learningAI technologyAlgorithmic biasRecognition capabilityReproductive medicineHuman errorSperm selectionEffects of AIStandard processIntelligenceIncreased accuracySensitivity fieldPersonalized treatment plansQuality assuranceOperational efficiencyLearningArtificial intelligence in ophthalmology
Khossravi A, Chen Q, Adelman R. Artificial intelligence in ophthalmology. Current Opinion In Ophthalmology 2024, 36: 35-38. PMID: 39607311, DOI: 10.1097/icu.0000000000001111.Peer-Reviewed Original ResearchConceptsTreatment of diabetic retinopathyImprove accuracy of diagnosisProgression of diseasePersonalized treatment plansCorneal infectionVisual outcomeIntraocular pressureMacular degenerationDiabetic retinopathyAccuracy of diagnosisFollow-upTreatment planningOcular imagingPersonalization of medicinePredictive of progression of diseasePatient outcomesDiagnosisEnhance patient outcomesIncorporation of genomicsTreatmentHome monitoringOutcomesCornealGlaucomaEctasia
2023
Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma.
Hsieh C, Laguna A, Ikeda I, Maxwell A, Chapiro J, Nadolski G, Jiao Z, Bai H. Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma. Radiology 2023, 309: e222891. PMID: 37934098, DOI: 10.1148/radiol.222891.Peer-Reviewed Original ResearchConceptsHepatocellular carcinomaImage-guided therapySerum markersTreatment responseMinimally invasive image-guided therapiesPrediction of treatment responseLocal-regional treatmentQuantitative imaging featuresPersonalized treatment plansTransarterial radioembolizationTransarterial chemoembolizationImage featuresInterventional oncologyPatient selectionTreatment planningMedical record dataTriage patientsThermal ablationScoring systemFunction biomarkersPatientsCarcinomaMachine learningTherapySerum
2021
Using Cognitive-Behavioral Therapy with Exposure for Anxious Students with Classroom Accommodations
Zaboski B, Romaker E. Using Cognitive-Behavioral Therapy with Exposure for Anxious Students with Classroom Accommodations. Journal Of College Student Mental Health 2021, 37: 209-226. DOI: 10.1080/87568225.2021.1961110.Peer-Reviewed Original ResearchCognitive behavioral therapyCognitive-behavioral interventionsClassroom accommodationsAnxious studentsAnxiety disordersCollege studentsClient behaviorCounseling techniquesERPAccessible explanationTheoretical underpinningsHigh needStudentsPostsecondary levelAnxietyPersonalized treatment plansStimuliAccommodationUnderpinningsImpairmentThorough assessmentBehaviorDisordersIntervention
2016
A novel approach to assess the treatment response using Gaussian random field in PET
Wang M, Guo N, Hu G, El Fakhri G, Zhang H, Li Q. A novel approach to assess the treatment response using Gaussian random field in PET. Medical Physics 2016, 43: 833-842. PMID: 26843244, PMCID: PMC4714995, DOI: 10.1118/1.4939879.Peer-Reviewed Original ResearchConceptsTherapy response assessmentStandardized uptake valuePositron emission tomographyEarly treatment responseResponse assessmentPositron emission tomography imagingTreatment responseTherapy responsePrediction of early treatment responseTreatment planningResponse to anticancer therapyTherapy response evaluationTumor-to-background contrastPost-therapy imagingClinical practiceEvaluate therapy responseReceiver operating characteristic curveDevelopment of personalized treatment plansEvaluate therapy effectsPersonalized treatment plansUptake valuePretherapy imagingClinical oncologyPatient managementAnticancer therapy
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply