2025
PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors
DeSpenza T, Kiziltug E, Allington G, Barson D, McGee S, O’Connor D, Robert S, Mekbib K, Nanda P, Greenberg A, Singh A, Duy P, Mandino F, Zhao S, Lynn A, Reeves B, Marlier A, Getz S, Nelson-Williams C, Shimelis H, Walsh L, Zhang J, Wang W, Prina M, OuYang A, Abdulkareem A, Smith H, Shohfi J, Mehta N, Dennis E, Reduron L, Hong J, Butler W, Carter B, Deniz E, Lake E, Constable R, Sahin M, Srivastava S, Winden K, Hoffman E, Carlson M, Gunel M, Lifton R, Alper S, Jin S, Crair M, Moreno-De-Luca A, Luikart B, Kahle K. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nature Neuroscience 2025, 28: 536-557. PMID: 39994410, DOI: 10.1038/s41593-024-01865-3.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsCongenital hydrocephalusCSF dynamicsIncreased CSF productionDe novo mutationsFrequent monogenic causeEverolimus treatmentCSF shuntingNonsurgical treatmentPTEN mutationsAqueductal stenosisInhibitory interneuronsVentriculomegalyProgenitor cellsChoroid plexusMonogenic causeCortical networksIncreased survivalBrain ventriclesCortical deficitsNeural progenitorsGene PTENCSF productionNkx2.1PTEN
2020
Genetic analysis of the cooperative tumorigenic effects of targeted deletions of tumor suppressors Rb1, Trp53, Men1, and Pten in neuroendocrine tumors in mice
Xu EY, Vosburgh E, Wong C, Tang LH, Notterman DA. Genetic analysis of the cooperative tumorigenic effects of targeted deletions of tumor suppressors Rb1, Trp53, Men1, and Pten in neuroendocrine tumors in mice. Oncotarget 2020, 11: 2718-2739. PMID: 32733644, PMCID: PMC7367653, DOI: 10.18632/oncotarget.27660.Peer-Reviewed Original ResearchTumor suppressor geneCooperative functionMolecular mechanismsTumor suppressor RB1Tumorigenic effectsCre-loxP systemGenetic analysisPTEN pathwaySuppressor geneGenesNeuroendocrine tumorigenesisGenetic alterationsDeletionPTENTrp53MeninHomozygous deletionExpressing cellsPathwayPRBSignificant roleMiceTumorigenesisPreclinical murine modelsMechanism
2019
CFTR-PTEN–dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection
Riquelme SA, Lozano C, Moustafa AM, Liimatta K, Tomlinson KL, Britto C, Khanal S, Gill SK, Narechania A, Azcona-Gutiérrez JM, DiMango E, Saénz Y, Planet P, Prince A. CFTR-PTEN–dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection. Science Translational Medicine 2019, 11 PMID: 31270271, PMCID: PMC6784538, DOI: 10.1126/scitranslmed.aav4634.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarboxy-LyasesColony Count, MicrobialCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorHCT116 CellsHumansHypoxia-Inducible Factor 1, alpha SubunitImmunityInterleukin-1betaLungMice, Inbred C57BLMiddle AgedMitochondriaOxidantsOxidative StressPseudomonas aeruginosaPseudomonas InfectionsPTEN PhosphohydrolaseReactive Oxygen SpeciesSuccinatesConceptsCystic fibrosis transmembrane conductance regulatorImmune-responsive gene 1Fibrosis transmembrane conductance regulatorEffect of PTENTransmembrane conductance regulatorPlasma membraneChromosome 10Reactive oxygen speciesConductance regulatorTumor suppressorTensin homologGene 1Mitochondrial functionMitochondrial activityAnti-inflammatory host responsesCell proliferationOxygen speciesPTENMyeloid cellsCFTR dysfunctionMetabolic defectsHost responseActivity contributesHomologComplexes
2015
DNA-repair defects in pancreatic neuroendocrine tumors and potential clinical applications
Liu IH, Ford JM, Kunz PL. DNA-repair defects in pancreatic neuroendocrine tumors and potential clinical applications. Cancer Treatment Reviews 2015, 44: 1-9. PMID: 26924193, DOI: 10.1016/j.ctrv.2015.11.006.Peer-Reviewed Original ResearchConceptsDNA repair pathwaysDNA repair defectsRepair pathwaysRepair genesRelevant DNA repair pathwaysPromoter hypermethylationDNA repair gene MGMTDNA repair processesDNA repair genesMMR genesTumor samplesDNA repairGene MGMTSpecific genesLoss of expressionUnderexpressed genesRepair defectsGenetic landscapeGenesMLH1 MMR geneDNA mismatch repair genesRepair mechanismsMGMT geneMismatch repair genesPTENPTENtiating autoimmunity through Treg cell deregulation
Ray JP, Craft J. PTENtiating autoimmunity through Treg cell deregulation. Nature Immunology 2015, 16: 139-140. PMID: 25594458, PMCID: PMC4447107, DOI: 10.1038/ni.3082.Peer-Reviewed Original Research
2014
Automated quantitative multiplex immunofluorescence in situ imaging identifies phospho-S6 and phospho-PRAS40 as predictive protein biomarkers for prostate cancer lethality
Shipitsin M, Small C, Giladi E, Siddiqui S, Choudhury S, Hussain S, Huang YE, Chang H, Rimm DL, Berman DM, Nifong TP, Blume-Jensen P. Automated quantitative multiplex immunofluorescence in situ imaging identifies phospho-S6 and phospho-PRAS40 as predictive protein biomarkers for prostate cancer lethality. Proteome Science 2014, 12: 40. PMID: 25075204, PMCID: PMC4114438, DOI: 10.1186/1477-5956-12-40.Peer-Reviewed Original ResearchProtein levelsPost-translational modificationsProtein-based approachGene-based approachesIntact tissue specimensProtein activityProtein signaturesHuman prostate cancerMolecular informationPredictive protein biomarkersProtein biomarker levelsPhospho-PRAS40Phospho-S6Prostate cancer lethalityTissue lysisSPP1PTENIntact tissueSMAD4Cancer lethalityPhenotypeCCND1Morphological featuresProtein biomarkersFunctional activityInsulin/IGF1 Signaling Inhibits Age-Dependent Axon Regeneration
Byrne AB, Walradt T, Gardner KE, Hubbert A, Reinke V, Hammarlund M. Insulin/IGF1 Signaling Inhibits Age-Dependent Axon Regeneration. Neuron 2014, 81: 561-573. PMID: 24440228, PMCID: PMC3924874, DOI: 10.1016/j.neuron.2013.11.019.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAnimals, Genetically ModifiedCaenorhabditis elegansCaenorhabditis elegans ProteinsDisease Models, AnimalForkhead Transcription FactorsGene Expression RegulationGreen Fluorescent ProteinsHumansImmunosuppressive AgentsInsulinInsulin-Like Growth Factor INerve DegenerationNerve RegenerationPhosphotransferases (Alcohol Group Acceptor)PTEN PhosphohydrolaseSignal TransductionSirolimusTime FactorsTranscription Factors
2011
Targeting Inhibitory Phosphatases in Tyrosine Kinase-Driven Leukemias
Shojaee S, Buchner M, Geng H, Silvia B, Koeffler P, Muschen M. Targeting Inhibitory Phosphatases in Tyrosine Kinase-Driven Leukemias. Blood 2011, 118: 1382. DOI: 10.1182/blood.v118.21.1382.1382.Peer-Reviewed Original ResearchCell deathReactive oxygen speciesInducible deletionLeukemia cellsTyrosine kinase signalingActivation signalsSmall molecule inhibitionSubsequent cell deathMultiple new targetsLeukemia cell deathBCR-ABL1 oncogeneCytoplasmic tailKinase signalingTransplant recipient miceInduction of CreTyrosine kinase inhibitorsCellular senescenceMolecule inhibitionTyrosine kinasePTPN6Drastic upregulationINPP5DCurrent tyrosine kinase inhibitorsPTENDeletionIn Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma
Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP. In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma. Cell 2011, 147: 382-395. PMID: 22000016, PMCID: PMC3236086, DOI: 10.1016/j.cell.2011.09.032.Peer-Reviewed Original ResearchConceptsMicroRNA recognition elementsLow PTEN levelsPTEN protein levelsZEB2 expressionBeauty insertional mutagenesisMicroRNA decoysPI3K/Akt pathwayLoss of PTENCeRNA activityInsertional mutagenesisZeb2 transcriptTumor suppressorCell transformationCeRNAsPTEN levelsAkt pathwayFunctional roleMRNA transcriptsSignificant enrichmentZEB2 mRNAProtein levelsMouse modelCeRNATranscriptsPTEN
2010
A novel role for PTEN in the inhibition of neurite outgrowth by myelin-associated glycoprotein in cortical neurons
Perdigoto AL, Chaudhry N, Barnes GN, Filbin MT, Carter BD. A novel role for PTEN in the inhibition of neurite outgrowth by myelin-associated glycoprotein in cortical neurons. Molecular And Cellular Neuroscience 2010, 46: 235-244. PMID: 20869442, PMCID: PMC3018674, DOI: 10.1016/j.mcn.2010.09.006.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedCerebral CortexCHO CellsCoculture TechniquesCricetinaeCricetulusHEK293 CellsHumansMiceMice, Inbred C57BLMice, KnockoutMyelin-Associated GlycoproteinNeuritesNeuronsProto-Oncogene Proteins c-aktPTEN PhosphohydrolaseReceptor, Nerve Growth Factorrho GTP-Binding Proteinsrho-Associated KinasesConceptsCortical neuronsInhibitory effectNeurite outgrowthEffect of MAGP75 neurotrophin receptorPI3K/AKT axisCentral nervous systemPTEN/PI3K/AKT axisAxonal regenerationCorticospinal tractPermanent disabilityNeurotrophin receptorNervous systemAKT axisPhospho-AktNeuronsStriking reductionProcess outgrowthDownstream effector kinasesMyelinInhibitory proteinNovel rolePTENReceptorsNovel pathway
2007
Phosphatase PTEN is inactivated in bovine aortic endothelial cells exposed to cyclic strain
Hoshino Y, Nishimura K, Sumpio BE. Phosphatase PTEN is inactivated in bovine aortic endothelial cells exposed to cyclic strain. Journal Of Cellular Biochemistry 2007, 100: 515-526. PMID: 16927376, DOI: 10.1002/jcb.21085.Peer-Reviewed Original ResearchConceptsCasein kinase 2Transfection of ECsPTEN plasmidVascular cell morphologyEndothelial cellsPI3K activitySuppression of apoptosisPI3K-Akt pathwayLipid phosphataseMaximal activityPhosphatase PTENPhospho-PTENPTEN activityBovine aortic endothelial cellsIntracellular phosphatidylinositolUpstream regulatorAkt activityKinase 2Phospho-AKT activityK activityTime-dependent mannerAortic endothelial cellsCell morphologyCell proliferationPTEN
2005
Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis*
Kushner J, Simpson L, Wartschow L, Guo S, Rankin M, Parsons R, White M. Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis*. Journal Of Biological Chemistry 2005, 280: 39388-39393. PMID: 16170201, DOI: 10.1074/jbc.m504155200.Peer-Reviewed Original ResearchConceptsInsulin/insulin-like growth factorWild typeIrs2 branchBeta-cell growthInsulin-like growth factorPhosphatase PTENGrowth factorFoxO1 phosphorylationBeta-cell massPTEN expressionAktPTENCascadeSmall isletsGlucose homeostasisInsulin productionGrowthIslet growthSufficient insulinPhosphatidylinositolTolerancePhosphorylationMiceSignalingHomeostasisRegulation of PTEN by Rho small GTPases
Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, Tang L, Hla T, Zeng R, Li L, Wu D. Regulation of PTEN by Rho small GTPases. Nature Cell Biology 2005, 7: 399-404. PMID: 15793569, DOI: 10.1038/ncb1236.Peer-Reviewed Original ResearchMeSH KeywordsAnimalscdc42 GTP-Binding ProteinChemotaxisDictyosteliumHumansIntracellular Signaling Peptides and ProteinsLeukocytesMiceModels, BiologicalNeutrophilsPhosphoric Monoester HydrolasesProtein Serine-Threonine KinasesProtein TransportPTEN Phosphohydrolaserho-Associated KinasesrhoA GTP-Binding ProteinTumor Suppressor ProteinsConceptsRegulation of PTENIntracellular localizationEmbryonic kidney cellsSmall GTPaseDownstream effectorsPhospholipid phosphatase activityRho small GTPasesRegulation of chemotaxisKidney cellsHuman embryonic kidney cellsSmall GTPasesRho familyPhosphoinositide substratesKey residuesActive RhoAPhosphatase activityPTENRhoAGTPaseRegulationHuman tumorsCellsDiverse rangeGTPasesCdc42
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply