2025
PET Mapping of Receptor Occupancy Using Joint Direct Parametric Reconstruction
Marin T, Belov V, Chemli Y, Ouyang J, Najmaoui Y, Fakhri G, Duvvuri S, Iredale P, Guehl N, Normandin M, Petibon Y. PET Mapping of Receptor Occupancy Using Joint Direct Parametric Reconstruction. IEEE Transactions On Biomedical Engineering 2025, 72: 1057-1066. PMID: 39446540, PMCID: PMC11875991, DOI: 10.1109/tbme.2024.3486191.Peer-Reviewed Original ResearchCentral nervous systemReceptor occupancyLow-binding regionsPET scansSimulation resultsPreclinical in vivo experimentsDynamic PET scansPairs of baselineEstimation of receptor occupancyEstimation frameworkPET neuroimagingReconstruction frameworkModulating drugsTime activity curvesParametric reconstructionDevelopment of drugs
2023
Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates
Chen B, Ojha D, Toyonaga T, Tong J, Pracitto R, Thomas M, Liu M, Kapinos M, Zhang L, Zheng M, Holden D, Fowles K, Ropchan J, Nabulsi N, De Feyter H, Carson R, Huang Y, Cai Z. Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates. European Journal Of Nuclear Medicine And Molecular Imaging 2023, 50: 2081-2099. PMID: 36849748, DOI: 10.1007/s00259-023-06162-y.Peer-Reviewed Original ResearchConceptsPositron emission tomographyHealthy nonhuman primatesVolume of distributionDistribution volume ratioBrain kineticsRat glioblastoma modelPreclinical evaluationBrain regionsGlioblastoma modelPET tracersNonhuman primatesTumor-bearing ratsEx vivo biodistributionPET imaging resultsActive clinical trialsTreatment of glioblastomaHigh specific uptakeDynamic PET scansNoninvasive quantificationBrain positron emission tomographyNondisplaceable volumeBrain penetrationLow nonspecific uptakePrognostic informationClinical trials
2022
Human biodistribution and radiation dosimetry of the demyelination tracer [18F]3F4AP
Brugarolas P, Wilks M, Noel J, Kaiser J, Vesper D, Ramos-Torres K, Guehl N, Macdonald-Soccorso M, Sun Y, Rice P, Yokell D, Lim R, Normandin M, El Fakhri G. Human biodistribution and radiation dosimetry of the demyelination tracer [18F]3F4AP. European Journal Of Nuclear Medicine And Molecular Imaging 2022, 50: 344-351. PMID: 36197499, PMCID: PMC9816249, DOI: 10.1007/s00259-022-05980-w.Peer-Reviewed Original ResearchConceptsRadiation dosimetryTime-activity curvesAdverse eventsEffective doseMultiple bed positionsComprehensive metabolic panelNonhuman primatesHealthy human volunteersNo adverse eventsDynamic PET scansVoltage-gated potassiumAnimal models of neurological diseasesNonhuman primate studiesModels of neurological diseasesHuman biodistributionAverage effective doseMetabolic panelDosimetryOLINDA softwareHealthy volunteersUrinary bladderPET scansDemyelinating lesionsBed positionAnimal models
2020
PET imaging of mGluR5 in Alzheimer’s disease
Mecca AP, McDonald JW, Michalak HR, Godek TA, Harris JE, Pugh EA, Kemp EC, Chen MK, Salardini A, Nabulsi NB, Lim K, Huang Y, Carson RE, Strittmatter SM, van Dyck CH. PET imaging of mGluR5 in Alzheimer’s disease. Alzheimer's Research & Therapy 2020, 12: 15. PMID: 31954399, PMCID: PMC6969979, DOI: 10.1186/s13195-020-0582-0.Peer-Reviewed Original ResearchConceptsEarly Alzheimer's diseaseAlzheimer's diseaseMild cognitive impairmentBrain amyloidHippocampus of ADPositron emission tomography radioligandSubtype 5 receptorsMild AD dementiaGray matter atrophyAssociation cortical regionsAmnestic mild cognitive impairmentImportant therapeutic targetCerebellum reference regionDynamic PET scansHippocampal mGluR5MethodsSixteen individualsMGluR5 bindingSynaptotoxic actionAD dementiaAD pathogenesisMatter atrophyInitial administrationAD groupSynaptic transmissionEntorhinal cortex
2019
PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes
Bini J, Sanchez-Rangel E, Gallezot JD, Naganawa M, Nabulsi N, Lim K, Najafzadeh S, Shirali A, Ropchan J, Matuskey D, Huang Y, Herold K, Harris PE, Sherwin RS, Carson RE, Cline GW. PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes. Journal Of Nuclear Medicine 2019, 61: 570-576. PMID: 31601695, PMCID: PMC7198375, DOI: 10.2967/jnumed.119.234013.Peer-Reviewed Original ResearchConceptsT1DM individualsHealthy controlsDopamine DOutcome measuresAcute C-peptide responseSUVR-1Type 1 diabetes mellitusPET/CT scanningDuration of diabetesMaximal glycemic potentiationC-peptide responseClinical outcome measuresInsulin secretory capacityRoutine clinical measuresD3 receptor densityΒ-cell functionC-peptide releaseQuantitative PET measuresΒ-cell massDynamic PET scansQuantitative outcome measuresAgonist PET radioligandDiabetes mellitusReceptor agonistInsulin antibodies
2014
Initial in vivo PET imaging of 5-HT1A receptors with 3-[(18)F]mefway.
Wooten DW, Hillmer AT, Murali D, Barnhart TE, Thio JP, Bajwa AK, Bonab AA, Normandin MD, Schneider ML, Mukherjee J, Christian BT. Initial in vivo PET imaging of 5-HT1A receptors with 3-[(18)F]mefway. American Journal Of Nuclear Medicine And Molecular Imaging 2014, 4: 483-9. PMID: 25143866, PMCID: PMC4138142.Peer-Reviewed Original ResearchCaudal anterior cingulate gyrusMesial temporal lobePET radiotracersPET imagingAnterior cingulate gyrusDynamic PET scansVivo PET imagingMale rhesus macaquesBolus injectionCingulate gyrusPET uptakeTemporal lobePET scansLower BPNDLow affinityVivo behaviorCerebellumRhesus macaquesReceptorsSufficient uptakeReference regionSpecific bindingMinutesRadiotracerShorter scan time
2010
Imaging of I2-imidazoline receptors by small-animal PET using 2-(3-fluoro-[4-11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD)
Kawamura K, Naganawa M, Konno F, Yui J, Wakizaka H, Yamasaki T, Yanamoto K, Hatori A, Takei M, Yoshida Y, Sakaguchi K, Fukumura T, Kimura Y, Zhang MR. Imaging of I2-imidazoline receptors by small-animal PET using 2-(3-fluoro-[4-11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD). Nuclear Medicine And Biology 2010, 37: 625-635. PMID: 20610167, DOI: 10.1016/j.nucmedbio.2010.02.013.Peer-Reviewed Original ResearchConceptsImidazoline receptorsI2-imidazoline receptorsDynamic PET scansRat brainParkinson's diseasePositron emission tomography (PET) probesPET scansAlzheimer's diseaseBrain regionsBrain tissueDistinct receptorsTissue dissectionPET studiesDiseaseHuntington's diseaseTributylstannyl precursorSmall-animal PETBrainReceptorsFirst imagingPET probeSignificant reductionRadioactivity levelsRatsInjection
2005
In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-18F-fluoro-A-85380 and PET.
Gallezot JD, Bottlaender M, Grégoire MC, Roumenov D, Deverre JR, Coulon C, Ottaviani M, Dollé F, Syrota A, Valette H. In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-18F-fluoro-A-85380 and PET. Journal Of Nuclear Medicine 2005, 46: 240-7. PMID: 15695782.Peer-Reviewed Original ResearchConceptsNicotinic acetylcholine receptorsLogan graphical analysisPET scansTime-activity curvesAcetylcholine receptorsStudy durationCerebral nicotinic acetylcholine receptorsDistribution of nAChRsVolume of distributionDynamic PET scansHuman brainIntravenous injectionFrontal cortexOccipital cortexHuman volunteersPET radioligandCompartment modelCompartmental kinetic analysisLogan analysisVolume of interest
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply