2025
A phase 2 trial of pembrolizumab for recurrent Lynch-like versus sporadic endometrial cancers with microsatellite instability (NCT02899793): Updated survival and response analyses
Ettorre V, Bellone S, Greenman M, McNamara B, Palmieri L, Sethi N, Demirkiran C, Papatla K, Kailasam A, Siegel E, Ratner E, Santin A. A phase 2 trial of pembrolizumab for recurrent Lynch-like versus sporadic endometrial cancers with microsatellite instability (NCT02899793): Updated survival and response analyses. Gynecologic Oncology 2025, 197: 110-115. PMID: 40334308, DOI: 10.1016/j.ygyno.2025.04.591.Peer-Reviewed Original ResearchProgression free survivalWhole-exome sequencingImmune checkpoint inhibitorsOverall survivalEndometrial cancerMicrosatellite instability-highCheckpoint inhibitorsFree survivalFollow-upResponse to immune checkpoint inhibitorsPatients treated with pembrolizumabProspective phase II studyExome sequencingResponse rateRecurrent platinum-resistantPhase II studyPhase 2 trialOverall survival dataEndometrial cancer patientsMLH-1MSI-H patientsFoundationOne platformImproved OSUpdate survivalPrognostic significanceCardiac Magnetic Resonance Imaging in Immune Checkpoint Inhibitor–Related Myocarditis
Hammer M, Tysarowski M, Fuss C, Bader A. Cardiac Magnetic Resonance Imaging in Immune Checkpoint Inhibitor–Related Myocarditis. Echocardiography 2025, 42: e70131. PMID: 40067334, DOI: 10.1111/echo.70131.Peer-Reviewed Original ResearchConceptsImmune-related adverse eventsImmune checkpoint inhibitorsCardiac magnetic resonance imagingMagnetic resonance imagingAssociated with immune-related adverse eventsCardiac immune-related adverse eventsMechanisms of immune checkpoint inhibitorsICI-associated myocarditisICI-related myocarditisResonance imagingPersonalized cancer immunotherapySevere cardiovascular complicationsImmune tolerance pathwayCheckpoint inhibitorsCancer immunotherapyCardiac complicationsCombination therapyTumor cytotoxicityClinical presentationCardiovascular complicationsAdverse eventsTherapeutic efficacyOncological treatmentTherapeutic strategiesMyocarditisPresence of tertiary lymphoid structures and exhausted tissue-resident T cells determines clinical response to PD-1 blockade in renal cell carcinoma.
Hugaboom M, Wirth L, Street K, Ruthen N, Jegede O, Schindler N, Shah V, Zaemes J, El Ahmar N, Matar S, Savla V, Choueiri T, Denize T, West D, McDermott D, Plimack E, Sosman J, Haas N, Stein M, Alter R, Bilen M, Hurwitz M, Hammers H, Signoretti S, Atkins M, Wu C, Braun D. Presence of tertiary lymphoid structures and exhausted tissue-resident T cells determines clinical response to PD-1 blockade in renal cell carcinoma. Cancer Discovery 2025, of1-of21. PMID: 39992403, DOI: 10.1158/2159-8290.cd-24-0991.Peer-Reviewed Original ResearchTertiary lymphoid structuresRenal cell carcinomaCD8+ T cellsAnti-PD1 monotherapyImmune checkpoint inhibitorsT cellsCell carcinomaLymphoid structuresClinical outcomesClinical response to PD-1 blockadeTreatment of advanced renal cell carcinomaResponse to PD-1 blockadePresence of tertiary lymphoid structuresAdvanced renal cell carcinomaTissue-resident T cellsPD-1 blockadePhase II clinical trialPD-1 pathwayCheckpoint inhibitorsICI resistancePD-1Responding patientsTumor microenvironmentTherapeutic responseTissue-residentInpatient Immunotherapy Outcomes Study: A Multicenter Retrospective Analysis.
Riaz F, Vaughn J, Zhu H, Dickerson J, Sayegh H, Brongiel S, Baldwin E, Kier M, Zaemes J, Hearn C, Abdelghany O, Cohen R, Parikh R, Reuss J, Prsic E, Doroshow D. Inpatient Immunotherapy Outcomes Study: A Multicenter Retrospective Analysis. JCO Oncology Practice 2025, op2400788. PMID: 39937997, DOI: 10.1200/op-24-00788.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsOverall survivalICI administrationSolid malignanciesPatients treated with immune checkpoint inhibitorsAdministration of immune checkpoint inhibitorsMultivariate Cox proportional hazards model analysisResponse to ICI therapyCox proportional hazards model analysisProportional hazards model analysisAdvanced solid malignanciesKaplan-Meier methodOutcomes of patientsInstitutional electronic medical recordsHazards model analysisCox proportional hazards modelsProportional hazards modelCheckpoint inhibitorsICI therapyMedian OSICI initiationICI useRetrospective studyClinical outcomesClinicodemographic variablesEfficacy and toxicity profile of antibody-drug conjugate (ADC) based combination therapy in patients with advanced urothelial carcinoma (aUC): A systematic review of clinical trials.
Jaime-Casas S, Zugman M, Barragan-Carrillo R, Zang P, Ebrahimi H, Mercier B, Castro D, Yip W, Li X, Dizman N, Salgia N, Hsu J, Nguyen C, Chehrazi-Raffle A, Zengin Z, Meza L, Pal S, Tripathi A. Efficacy and toxicity profile of antibody-drug conjugate (ADC) based combination therapy in patients with advanced urothelial carcinoma (aUC): A systematic review of clinical trials. Journal Of Clinical Oncology 2025, 43: 813-813. DOI: 10.1200/jco.2025.43.5_suppl.813.Peer-Reviewed Original ResearchAny-grade adverse eventsAdvanced urothelial carcinomaObjective-response rateAntibody-drug conjugatesCombination regimensClinical trialsCheckpoint inhibitorsSafety/tolerability profileCombination therapyPublished prospective clinical trialsProspective clinical trialPeer-reviewed clinical trialsSystematic review of clinical trialsReview of clinical trialsRandom-effects modelEnfortumab vedotinSacituzumab govitecanUrothelial carcinomaProspective trialsTreatment landscapeMaculopapular rashEfficacy outcomesRetrospective studyToxicity profileCase reportDose finding study of CBM588 in combination with nivolumab and ipilimumab in patients with metastatic renal cell carcinoma: A phase I study.
Agarwal R, Ebrahimi H, Zengin Z, Barragán Carrillo R, Dizman N, Zugman M, Jaime-Casas S, Meza L, Li X, Hsu J, Castro D, Mercier B, Lee P, Takahashi M, Tripathi A, Dorff T, Caporaso G, Lee K, Pal S, Chehrazi-Raffle A. Dose finding study of CBM588 in combination with nivolumab and ipilimumab in patients with metastatic renal cell carcinoma: A phase I study. Journal Of Clinical Oncology 2025, 43: tps611-tps611. DOI: 10.1200/jco.2025.43.5_suppl.tps611.Peer-Reviewed Original ResearchMetastatic renal cell carcinomaImmune checkpoint inhibitorsProgression-free survivalMaximum tolerated dosePhase I studyRenal cell carcinomaDose levelsCell carcinomaClinical outcomesEfficacy of immune checkpoint inhibitorsMetastatic renal cell carcinoma patientsModulation of immune pathwaysImmune checkpoint inhibitor therapyStandard-of-care treatmentIMDC risk groupsPlanned dose levelsCombination of nivolumabDose-limiting toxicityDose-escalation designDose-escalation studyECOG performance statusDose-finding studyGut microbiomeCheckpoint inhibitorsDose escalationINTerpath-004: A phase 2, randomized, double-blind study of adjuvant pembrolizumab (pembro) with V940 (mRNA-4157) or placebo for renal cell carcinoma (RCC).
Motzer R, Braun D, Powles T, Gurney H, Fong L, George D, Haas N, McDermott D, Shuch B, Meehan R, Posadas T, Wu S, Elfiky A, Choueiri T. INTerpath-004: A phase 2, randomized, double-blind study of adjuvant pembrolizumab (pembro) with V940 (mRNA-4157) or placebo for renal cell carcinoma (RCC). Journal Of Clinical Oncology 2025, 43: tps610-tps610. DOI: 10.1200/jco.2025.43.5_suppl.tps610.Peer-Reviewed Original ResearchRenal cell carcinomaWeeks prior to randomizationAdverse eventsTumor-specific T-cell activationResection of metastatic lesionsAdjuvant treatment of patientsIncreased risk of recurrenceStage III/IV melanomaImmune checkpoint inhibitorsDisease-free survivalMetastasis-free survivalPhase 2 trialRisk of recurrenceDouble-blind studyT cell activationTreatment of patientsNovel combination strategiesDose of treatmentAdjuvant pembrolizumabAdjuvant settingCheckpoint inhibitorsPapillary histologyPD-1Sarcomatoid featuresMetastatic lesionsDatopotamab deruxtecan (Dato-DXd) in locally advanced/metastatic urothelial cancer: Updated results from the phase 1 TROPIONPanTumor01 study.
Meric-Bernstam F, Alhalabi O, Lisberg A, Drakaki A, Garmezy B, Kogawa T, Spira A, Salkeni M, Gao X, Tolcher A, Bhave M, Doroshow D, Hoffman-Censits J, Klauss G, Kaga Y, Kakurai Y, Kojima T. Datopotamab deruxtecan (Dato-DXd) in locally advanced/metastatic urothelial cancer: Updated results from the phase 1 TROPIONPanTumor01 study. Journal Of Clinical Oncology 2025, 43: 663-663. DOI: 10.1200/jco.2025.43.5_suppl.663.Peer-Reviewed Original ResearchTreatment-emergent adverse eventsBlinded independent central reviewProgression-free survivalDuration of responsePartial responseIndependent central reviewComplete responseConfirmed ORRUrothelial cancerCentral reviewMedian duration of responseMedian progression-free survivalResponse rateImmune checkpoint inhibitorsInterstitial lung disease/pneumonitisTreatment-related AEsMedian follow-upSolid tumor typesAntibody-drug conjugatesPrimary study objectiveCheckpoint inhibitorsDose interruptionPretreated ptsStable diseaseData cutoffModeling survival outcomes of KEYNOTE-564 with standard of care control arm treatment: A simulation study.
Ghali F, Rahman S, James S. Modeling survival outcomes of KEYNOTE-564 with standard of care control arm treatment: A simulation study. Journal Of Clinical Oncology 2025, 43: 517-517. DOI: 10.1200/jco.2025.43.5_suppl.517.Peer-Reviewed Original ResearchStandard of careKEYNOTE-564KEYNOTE-426Renal cell carcinomaCheckpoint inhibitorsUnadjusted hazard ratioOverall survivalControl armHazard ratioPatient-level survival dataFirst-line settingImproved overall survivalProportion of patientsKaplan-Meier plotsMortality riskSurvival parametersControl group patientsOne-year mortality riskCell carcinomaFirst-lineSurvival outcomesControl patientsGroup patientsSurvival curvesArm treatmentComprehensive proteomic profiling of plasma samples associated with response or resistance to immune checkpoint inhibitors (ICI) in patients with renal cell carcinoma (RCC).
Kashima S, Xu W, Canniff J, Saliby R, Sun M, Lee G, Machaalani M, Signoretti S, McGregor B, McKay R, Choueiri T, Braun D. Comprehensive proteomic profiling of plasma samples associated with response or resistance to immune checkpoint inhibitors (ICI) in patients with renal cell carcinoma (RCC). Journal Of Clinical Oncology 2025, 43: 562-562. DOI: 10.1200/jco.2025.43.5_suppl.562.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsRenal cell carcinomaRenal cell carcinoma patientsICI-based therapyNon-respondersPatients treated with ICI monotherapyResistance to immune checkpoint inhibitorsHLA-BICI respondersAdvanced renal cell carcinomaImmune cells to tumorsTGF-B pathwayTreatment evolutionCells to tumorsSustained immune activationPlasma samplesProfiling of plasma samplesCornerstone of treatmentPaired samplesPlasma proteomic analysisAssociated with responseAnti-tumor inflammationICI monotherapyInvestigated plasma proteinsCheckpoint inhibitorsImmunogenomic determinants of exceptional response to immune checkpoint inhibition in renal cell carcinoma
Jammihal T, Saliby R, Labaki C, Soulati H, Gallegos J, Peris A, McCurry D, Yu C, Shah V, Poduval D, El Zarif T, El Ahmar N, Laimon Y, Eid M, Sheshdeh A, Krajewski K, Büttner F, Schwab M, Heng D, Casellas R, Rai K, Zacharias Millward N, Msaouel P, Karam J, Signoretti S, Van Allen E, Choueiri T, Braun D, Shukla S. Immunogenomic determinants of exceptional response to immune checkpoint inhibition in renal cell carcinoma. Nature Cancer 2025, 6: 372-384. PMID: 39789182, PMCID: PMC12121501, DOI: 10.1038/s43018-024-00896-w.Peer-Reviewed Original ResearchConceptsTertiary lymphoid structuresVascular endothelial growth factorRenal cell carcinomaCell carcinomaCytotoxic T-lymphocyte-associated protein 4 inhibitorsResponse to immune checkpoint inhibitionExceptional responseMetastatic clear cell renal cell carcinomaStandard-of-care immunotherapiesTertiary lymphoid structure formationCytotoxic T cell responsesClear cell renal cell carcinomaIO-based treatmentsTreatment-naive personsImmune checkpoint inhibitionImmune checkpoint inhibitorsCell renal cell carcinomaT cell responsesT-cell-directedEndothelial growth factorCell death proteinAntitumor immunityCheckpoint inhibitionCheckpoint inhibitorsNeoantigen loadHow to Use Imaging: Complex Cases of Atherosclerosis, Myocardial Inflammation, and Cardiomyopathy in Cardio-Oncology
Khattab M, Baig M, Zarif T, Barac A, Ferencik M, Henry M, Lopez-Mattei J, Redheuil A, Salem J, Scherrer-Crosbie M, Yang E, Baldassarre L. How to Use Imaging: Complex Cases of Atherosclerosis, Myocardial Inflammation, and Cardiomyopathy in Cardio-Oncology. Circulation Cardiovascular Imaging 2025, 18: e015981. PMID: 39772610, DOI: 10.1161/circimaging.124.015981.Peer-Reviewed Original ResearchConceptsCardio-oncologyCases of atherosclerosisCardiac magnetic resonance imagingCoronary computed tomography angiographySingle-photon emission computed tomographyImmune checkpoint inhibitorsLeft ventricular dysfunctionMultimodality cardiac imagingTyrosine kinase inhibitorsCardiac imaging modalitiesComputed tomography angiographyRisk of cardiovascular diseaseEmission computed tomographyPositron emission tomographyMagnetic resonance imagingCheckpoint inhibitorsVentricular dysfunctionMyocardial inflammationCoronary vasospasmAccelerated atherosclerosisKinase inhibitorsPatient populationDiagnosing such pathologiesCancer therapyCardiac imaging
2024
Mechanisms of immunotherapy resistance in small cell lung cancer
Nie Y, Schalper K, Chiang A. Mechanisms of immunotherapy resistance in small cell lung cancer. Cancer Drug Resistance 2024, 7: n/a-n/a. PMID: 39802951, PMCID: PMC11724353, DOI: 10.20517/cdr.2024.154.Peer-Reviewed Original ResearchSmall-cell lung cancerImmune checkpoint inhibitorsSociety for Immunotherapy of CancerImmunotherapy resistanceTumor microenvironmentPrimary resistanceAcquired resistancePrimary resistance to immune checkpoint inhibitorsLung cancerResistance to immune checkpoint inhibitorsMechanisms of immunotherapy resistanceSmall cell lung cancerImmunosuppressive immune cellsImmunotherapy to chemotherapyResistance to immunotherapySociety for ImmunotherapyImmunotherapy of cancerAggressive neuroendocrine tumorCell lung cancerCheckpoint inhibitorsTumor immunogenicityEffective immunotherapyNeuroendocrine tumorsPoor prognosisAntigen presentationTargeting immune evasion in hepatocellular carcinoma-initiating cells
Sirera R, Beltrán-Visiedo M, Galluzzi L. Targeting immune evasion in hepatocellular carcinoma-initiating cells. Trends In Immunology 2024, 46: 4-6. PMID: 39721855, DOI: 10.1016/j.it.2024.12.002.Peer-Reviewed Original ResearchMismatch Repair Proficient Colorectal Adenocarcinoma in Two Patients With Lynch Syndrome
Khandakar B, Lacy J, Gibson J. Mismatch Repair Proficient Colorectal Adenocarcinoma in Two Patients With Lynch Syndrome. Clinical Genetics 2024, 107: 469-474. PMID: 39660603, DOI: 10.1111/cge.14670.Peer-Reviewed Original ResearchLynch syndromeColorectal carcinomaResponse to immune checkpoint inhibitorsImpact of molecular classificationImmune checkpoint inhibitorsColorectal carcinoma developmentMismatch repairMicrosatellite instabilityResponse to treatmentPMS2 variantsCheckpoint inhibitorsPembrolizumab treatmentPathological responsePatient AGermline variantsColorectal adenocarcinomaMismatch repair proteinsMolecular classificationLS patientsImpact of radiation therapy dose, fractionation, and immunotherapeutic partner in a mouse model of hormone receptor–positive mammary carcinogenesis
Buqué A, Bloy N, Petroni G, Jiménez-Cortegana C, Sato A, Iribarren C, Yamazaki T, Galassi C, Hensler M, Bhinder B, Guarracino A, Rippon B, Beltran-Visiedo M, Soler-Agesta R, Pannellini T, Fucikova J, Demaria S, Zhou X, Elemento O, Formenti S, Galluzzi L. Impact of radiation therapy dose, fractionation, and immunotherapeutic partner in a mouse model of hormone receptor–positive mammary carcinogenesis. Journal Of The National Cancer Institute 2024, djae329. PMID: 39661487, DOI: 10.1093/jnci/djae329.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsRadiation therapyFocal RTOverall survivalMammary carcinogenesisPD-1Impact of radiotherapy doseMouse modelPD-1 blockerRT plus immunotherapyPrimary tumor growthPrimary disease controlIncrease local controlCheckpoint inhibitorsRadiotherapy doseHypofractionated RTOS benefitTumor burdenPrimary tumorBreast cancerTumor growthNeoplastic lesionsLocal controlICI sensitivityEffective immunityImmunogenicity of cell death and cancer immunotherapy with immune checkpoint inhibitors
Catanzaro E, Beltrán-Visiedo M, Galluzzi L, Krysko D. Immunogenicity of cell death and cancer immunotherapy with immune checkpoint inhibitors. Cellular & Molecular Immunology 2024, 22: 24-39. PMID: 39653769, PMCID: PMC11685666, DOI: 10.1038/s41423-024-01245-8.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsImmunogenic cell deathImmunogenic cell death inducerCheckpoint inhibitorsRefractory to immune checkpoint inhibitorsImmunogenicity of cell deathFraction of patientsCombinatorial treatment strategiesAdaptive immune responsesCell deathCombinatorial partnersCancer immunotherapyCombinatorial regimensClinical findingsClinical managementTreatment strategiesClinical activityImmune responseImmunotherapyPatientsCancerOncology settingInhibitorsDeathInducerHypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, PMCID: PMC11602551, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibitionNovel Biomarkers and Imaging Tests for Acute Kidney Injury Diagnosis in Patients with Cancer
Mistry K, Sadarangani S, Moreno D, Mejia S, Moledina D, Sise M. Novel Biomarkers and Imaging Tests for Acute Kidney Injury Diagnosis in Patients with Cancer. Kidney360 2024, 6: 167-174. PMID: 39575585, PMCID: PMC11793192, DOI: 10.34067/kid.0000000660.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsAcute kidney injuryEtiology of acute kidney injuryNeutrophil gelatinase-associated lipocalinImmune checkpoint inhibitorsAcute interstitial nephritisPatients treated with immune checkpoint inhibitorsDiagnosis of acute interstitial nephritisPersistent acute kidney injuryDiagnosis of acute kidney injuryAcute kidney injury diagnosisTumor necrosis factor-alphaKidney injury molecule 1Acute tubular injuryGroup of patientsPre-renal azotemiaNecrosis factor-alphaNon-invasive urineUrine protein quantificationUnmet clinical needNon-invasive diagnostic toolC-X-CCheckpoint inhibitorsUrinary obstructionCisplatin administrationBlood-based biomarkersDecoy-resistant IL-18 reshapes the tumor microenvironment and enhances rejection by anti-CTLA-4 in renal cell carcinoma
Schoenfeld D, Djureinovic D, Su D, Zhang L, Lu B, Kamga L, Mann J, Huck J, Hurwitz M, Braun D, Jilaveanu L, Ring A, Kluger H. Decoy-resistant IL-18 reshapes the tumor microenvironment and enhances rejection by anti-CTLA-4 in renal cell carcinoma. JCI Insight 2024, 10: e184545. PMID: 39561007, PMCID: PMC11721305, DOI: 10.1172/jci.insight.184545.Peer-Reviewed Original ResearchAnti-CTLA-4Renal cell carcinomaIL-18IL-18BPCell carcinomaTumor microenvironmentTumor typesPatients treated with immune checkpoint inhibitorsRegulatory T cell levelsAnti-PD-1 treatmentCD8+ T cellsAnti-PD-1Immune checkpoint inhibitorsCell renal cell carcinomaNon-responder patientsMyeloid cell populationsT cell levelsCytokine interleukin-18Anti-cancer efficacySecreted binding proteinCheckpoint inhibitorsResponding patientsPreclinical modelsT cellsMurine model
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply