2025
Ventricular ion channels and arrhythmias: an overview of physiology, pathophysiology and pharmacology
Liu S, Wang W, Yang Y, Huang Z. Ventricular ion channels and arrhythmias: an overview of physiology, pathophysiology and pharmacology. Medical Review 2025, 0 DOI: 10.1515/mr-2024-0085.Peer-Reviewed Original ResearchCardiac ion channelsAntiarrhythmic drugsIon channelsAssociated with inherited cardiac arrhythmiasAction potentialsVentricular ion channelsCardiac action potentialIon channel functionCardiac functionNa VChannel functionOverview of physiologyCardiac arrhythmiasDysfunctional mutationsGenetic mutationsArrhythmiasTherapeutic targetPropagation of cardiac action potentialsCardiac electrophysiologyCa VPathophysiologyCardiac healthDrugPharmacologyMutationsCACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left‐Right Patterning in Xenopus tropicalis
Kostiuk V, Kabir R, Akbari R, Rushing A, González D, Kim A, Kim A, Zenisek D, Khokha M. CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left‐Right Patterning in Xenopus tropicalis. Genesis 2025, 63: e70009. PMID: 40008628, PMCID: PMC11867209, DOI: 10.1002/dvg.70009.Peer-Reviewed Original ResearchConceptsCongenital heart diseaseCACNA1GLow-voltage-activated calcium channelsExpression of Cacna1gCalcium channelsPatient cohortCardiac functionLR patterningHeterotaxyLR organizerChannel familyCACNA1SHeart diseaseLeft-rightG expressionXenopus tropicalisAbnormal expressionProcess of cilia formationCardiac loopingMultiple organsSignaling cascadesLR asymmetryPatientsT-typeEmbryonic developmentIs There More to POCUS Than the Heart and Lungs in the Parturient-Venous Excess Ultrasound Score?
Munoz-Acuna R, Charchaflieh J, Deshpande R. Is There More to POCUS Than the Heart and Lungs in the Parturient-Venous Excess Ultrasound Score? Obstetric Anesthesia Digest 2025, 45: 19-20. DOI: 10.1097/01.aoa.0001097560.30255.cc.Peer-Reviewed Original ResearchUltrasound scoreVenous excess ultrasound scoreVenous hemodynamic dysfunctionVolume overloadPulmonary edemaCardiac functionHemodynamic dysfunctionEndothelial dysfunctionVenous disordersTailored treatmentCapillary permeabilityMultisystem conditionPreeclampsiaDysfunctionScoresEdemaVExUSPathophysiologyMultisystemInterleukin-10 exhibit dose-dependent effects on macrophage phenotypes and cardiac remodeling after myocardial infarction
Zhang J, Rizk R, Li X, Lee B, Matthies M, Bietz K, Kim K, Huard J, Wang Y, Chen W. Interleukin-10 exhibit dose-dependent effects on macrophage phenotypes and cardiac remodeling after myocardial infarction. Frontiers In Physiology 2025, 15: 1481460. PMID: 39882328, PMCID: PMC11774956, DOI: 10.3389/fphys.2024.1481460.Peer-Reviewed Original ResearchIL-10 treatmentIL-10Dose-dependent effectMyocardial infarctionPost-MICardiac remodelingInterleukin-10Lower LV ejection fractionDoses of IL-10LV ejection fractionIL-10 administrationMyocardial gene expressionExogenous IL-10IL-10 secretionEffective dose rangePhenotypic transitionDose-dependent mannerLV fibrosisEjection fractionMouse MI modelCardiac functionCell infiltrationImmunomodulatory cytokinesContractile functionDose-dependently
2024
Regulation of Cardiac Function by the Autonomic Nervous System
Hafez O, Chang R. Regulation of Cardiac Function by the Autonomic Nervous System. Physiology 2024, 40: 000-000. PMID: 39585760, DOI: 10.1152/physiol.00018.2024.Peer-Reviewed Original ResearchAutonomic nervous systemNervous systemNeurocardiac axisIntrinsic cardiac nervous systemRegulation of cardiac functionCardiac nervous systemAutonomic control of the heartRegulating cardiovascular physiologyAutonomic dysfunctionSensory neuronsCardiac functionParasympathetic nervous systemClinical conditionsCardiac reflexesThe heartNeuronal populationsTreatment approachesCardiovascular diseaseCardiovascular physiologyMotor circuitsPhysiological roleAutonomic controlClinical fieldHeartDysfunctionAssociation between Left Ventricular Geometry, Systolic Ejection Time, and Estimated Glomerular Filtration Rate in Ambulatory Patients with Preserved Left Ventricular Ejection Fraction
Goeddel L, Navarrete S, Waldron N, D’Amiano A, Faraday N, Lima J, Parikh C, Bandeen-Roche K, Hays A, Brown C. Association between Left Ventricular Geometry, Systolic Ejection Time, and Estimated Glomerular Filtration Rate in Ambulatory Patients with Preserved Left Ventricular Ejection Fraction. Cardiology 2024, 1-11. PMID: 39353411, DOI: 10.1159/000541725.Peer-Reviewed Original ResearchLeft ventricular ejection fractionTrans thoracic echocardiographyIncreased RWTRelative wall thicknessChronic kidney diseaseLeft ventricular ejection timeSubclinical systolic dysfunctionVentricular ejection fractionCardiac functionSystolic dysfunctionEjection fractionSystolic functionClinical outcomesPreserved left ventricular ejection fractionAmbulatory patientsAssociated with adverse clinical outcomesMeasures of LV geometryEjection timeAssociated with chronic kidney diseaseIncreased oddsMeasures of cardiac functionLV relative wall thicknessSubclinical cardiac dysfunctionIncreased odds of CKDOdds of chronic kidney diseaseThe Incidence and Impact of Cardiac Function Decline after Lower Extremity Revascularization
Jamil Y, Huttler J, Alameddine D, Wu Z, Mena-Hurtado C, Velazquez E, Guzman R, Ochoa Chaar C. The Incidence and Impact of Cardiac Function Decline after Lower Extremity Revascularization. Annals Of Vascular Surgery 2024, 110: 414-423. PMID: 39343374, DOI: 10.1016/j.avsg.2024.07.119.Peer-Reviewed Original ResearchCardiac functional declineStable cardiac functionLower extremity revascularizationPeripheral arterial diseaseCardiac functionFollow-upExtremity revascularizationFunctional declineElectronic records of patientsKaplan-Meier analysisRecords of patientsMode of revascularizationAdverse limb eventsLower-extremity revascularizationTransthoracic echocardiogramReintervention rateHeart failureDiabetes mellitusPeriprocedural bleedingPatient characteristicsArtery diseasePatientsLimb eventsIncreased mortalityRevascularizationResidual Ultrasound-Enhancing Agents Mimicking Portal Venous Gas
Bitar R, Langdon J, Kaur M, Crandall I, McNamara R, Revzin M. Residual Ultrasound-Enhancing Agents Mimicking Portal Venous Gas. Ultrasound Quarterly 2024, 40: e00694. PMID: 39466239, DOI: 10.1097/ruq.0000000000000694.Peer-Reviewed Original ResearchConceptsUltrasound enhancing agentsPortal venous gasBowel ischemiaAbdominal ultrasoundVenous gasEchogenic fociContrast-enhanced echocardiographyEvaluation of cardiac functionPortal venous systemSeries of casesSonographic detectionCardiac functionDifferential diagnosisPortal veinVenous systemObservational studyLiver parenchymaPortal triadsVascular patencyBowelIschemiaEchocardiographyLiverUltrasoundExposome-Wide Ranking to Uncover Environmental Chemicals Associated with Dyslipidemia: A Panel Study in Healthy Older Chinese Adults from the BAPE Study.
Ding E, Deng F, Fang J, Liu J, Yan W, Yao Q, Miao K, Wang Y, Sun P, Li C, Liu Y, Dong H, Dong L, Zhang X, Lu Y, Lin X, Ding C, Li T, Shi Y, Cai Y, Liu X, Godri Pollitt K, Ji J, Tong S, Tang S, Shi X. Exposome-Wide Ranking to Uncover Environmental Chemicals Associated with Dyslipidemia: A Panel Study in Healthy Older Chinese Adults from the BAPE Study. Environmental Health Perspectives 2024, 132: 97005. PMID: 39240788, PMCID: PMC11379127, DOI: 10.1289/ehp13864.Peer-Reviewed Original ResearchConceptsDyslipidemia markersCardiovascular diseaseMulti-omicsMarkers of dyslipidemiaExamination of cytokinesMeasurement of cytokinesSerum lipidomeSystemic inflammationMulti-omics profilingCardiac functionDyslipidemiaPrimary preventionClinical measuresSerumChinese adultsBlood transcriptomeImpact spectraCytokinesExposome-wide association studyInflammationMarkersBiomolecular pathwaysAssociationHealthy older adultsElectrocardiogramUltrasonography for Procedural Guidance
Munoz-Acuna R, Leibowitz A, Bose S. Ultrasonography for Procedural Guidance. 2024, 493-507. DOI: 10.1007/978-3-031-45731-9_21.Peer-Reviewed Original ResearchIntensive care unitCare unitEvaluate cardiac functionCritically ill patientsStandard of careSonographic evaluationPelvic contentsCardiac functionExtracorporeal supportAbnormal anatomyVenous structuresLung parenchymaVascular accessIll patientsCritical care unitsClinical practiceUltrasound machineDiagnostic toolUltrasoundUltrasonographyProcedural guidanceMitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction
Rudokas M, McKay M, Toksoy Z, Eisen J, Bögner M, Young L, Akar F. Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction. Cardiovascular Diabetology 2024, 23: 261. PMID: 39026280, PMCID: PMC11264840, DOI: 10.1186/s12933-024-02357-1.Peer-Reviewed Original ResearchConceptsReactive oxygen speciesMitochondrial network remodelingDamaged mitochondrial DNAEfficiency of oxidative phosphorylationImpaired ATP productionMitochondrial ultrastructural alterationsCardiac functionDiabetic heartCellular energy metabolismProduction of reactive oxygen speciesMitochondrial DNAMitochondrial networkMitochondrial fissionExcessive production of reactive oxygen speciesOxidative phosphorylationATP productionResponse to ischemic insultGlobal cardiac functionCell deathOverall cardiac functionCardiac ischemic injuryResponse to injuryCardiac mitochondriaIrreversible cell deathMitochondriaMaximizing Minimally Invasive Cardiac Surgery With Enhanced Recovery (ERAS)
Salenger R, Ad N, Grant M, Bakaeen F, Balkhy H, Mick S, Nia P, Kempfert J, Bonaros N, Bapat V, von Ballmoos M, Gerdisch M, Johnston D, Engelman D. Maximizing Minimally Invasive Cardiac Surgery With Enhanced Recovery (ERAS). Innovations Technology And Techniques In Cardiothoracic And Vascular Surgery 2024, 19: 371-379. PMID: 39205530, DOI: 10.1177/15569845241264565.Peer-Reviewed Original ResearchMinimally invasive cardiac surgeryInvasive cardiac surgeryCardiac surgeryPerioperative carePreservation of cardiac functionManagement of hemodynamicsGroup of cardiac surgeonsEnhanced recoveryComprehensive perioperative careCardiac surgeonsCardiac functionSurgical incisionERAS programSurgical goalsMyocardial managementSurgeryTissue invasionIncisionPatientsRight Ventricular Pressure Waveform Analysis—Clinical Relevance and Future Directions
Heerdt P, Kheyfets V, Oakland H, Joseph P, Singh I. Right Ventricular Pressure Waveform Analysis—Clinical Relevance and Future Directions. Journal Of Cardiothoracic And Vascular Anesthesia 2024, 38: 2433-2445. PMID: 39025682, PMCID: PMC11580041, DOI: 10.1053/j.jvca.2024.06.022.Peer-Reviewed Original ResearchRight ventricular pressureRight ventricular functionVentricular pressureVentricular functionMeasuring right ventricular pressureMeasurements of right ventricular pressurePeak right ventricular pressurePulmonary artery pressureEvaluate cardiac functionPulmonary arteryStroke volume measurementsRight atriumCardiac functionDiastolic fillingSurgical patientsArterial pressureClinical valueDemonstrating utilityVolume measurementsMeasurements of pressurePressure waveformAccurate surrogateContinuous measurement of pressurePhysiological factorsEchocardiographyTherapeutic Inhibition of LincRNA-p21 Protects Against Cardiac Hypertrophy
Wang Y, Zhang M, Wang R, Lin J, Ma Q, Guo H, Huang H, Liang Z, Cao Y, Zhang X, Lu Y, Liu J, Xiao F, Yan H, Dimitrova N, Huang Z, Mably J, Pu W, Wang D. Therapeutic Inhibition of LincRNA-p21 Protects Against Cardiac Hypertrophy. Circulation Research 2024, 135: 434-449. PMID: 38864216, PMCID: PMC11257812, DOI: 10.1161/circresaha.123.323356.Peer-Reviewed Original ResearchCardiac hypertrophyHeart failureGenome-wide transcriptome analysisCardiac functionDeterioration of cardiac functionResponse to pressure overloadAssociated heart failureTherapeutic potentialLoss-of-function miceDilated cardiomyopathy patientsPressure-overload conditionsInhibit cardiac hypertrophyTranscriptome analysisCardiac-specific knockoutMaladaptive cardiac remodelingLong noncoding RNAsVentricular wall thickeningNoncoding RNAsTranscriptional network analysisCardiomyopathy patientsMarker elevationPressure overloadCardiac remodelingPathological hypertrophyAdverse remodelingResident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia
Weinberger T, Denise M, Joppich M, Fischer M, Rodriguez C, Kumaraswami K, Wimmler V, Ablinger S, Räuber S, Fang J, Liu L, Liu H, Winterhalter J, Lichti J, Thomas L, Esfandyari D, Percin G, Matin S, Hidalgo A, Waskow C, Engelhardt S, Todica A, Zimmer R, Pridans C, Perdiguero E, Schulz C. Resident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia. ELife 2024, 12: rp89377. PMID: 38775664, PMCID: PMC11111219, DOI: 10.7554/elife.89377.Peer-Reviewed Original ResearchConceptsInfarct sizeCardiac remodelingI/R injuryMacrophage populationsDeterioration of cardiac functionRecruitment of monocyte-derived macrophagesIschemia/reperfusion (I/R) injuryAntigen-presenting macrophagesImmune cell crosstalkSubsets of macrophagesIncreased infarct sizeMonocyte-derived macrophagesResponse to injuryInfluence infarct sizeContext of myocardial infarctionCSF1R inhibitionCardiac healingCardiac macrophagesCardiac functionCell crosstalkAdverse remodelingResident macrophagesTissue macrophagesMacrophage lineageMyocardial ischemiaResident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia
Weinberger T, Denise M, Joppich M, Fischer M, Garcia Rodriguez C, Kumaraswami K, Wimmler V, Ablinger S, Räuber S, Fang J, Liu L, Liu W, Winterhalter J, Lichti J, Thomas L, Esfandyari D, Percin G, Matin S, Hidalgo A, Waskow C, Engelhardt S, Todica A, Zimmer R, Pridans C, Gomez Perdiguero E, Schulz C. Resident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia. ELife 2024, 12 DOI: 10.7554/elife.89377.4.Peer-Reviewed Original ResearchInfarct sizeCardiac remodelingI/R injuryMacrophage populationsDeterioration of cardiac functionRecruitment of monocyte-derived macrophagesIschemia/reperfusion (I/R) injuryAntigen-presenting macrophagesImmune cell crosstalkSubsets of macrophagesIncreased infarct sizeMonocyte-derived macrophagesResponse to injuryInfluence infarct sizeContext of myocardial infarctionCSF1R inhibitionCardiac healingCardiac macrophagesCardiac functionCell crosstalkAdverse remodelingResident macrophagesTissue macrophagesMacrophage lineageMyocardial ischemiaCentral Artery Hemodynamics in Angiotensin II-Induced Hypertension and Effects of Anesthesia
Hopper S, Weiss D, Mikush N, Jiang B, Spronck B, Cavinato C, Humphrey J, Figueroa C. Central Artery Hemodynamics in Angiotensin II-Induced Hypertension and Effects of Anesthesia. Annals Of Biomedical Engineering 2024, 52: 1051-1066. PMID: 38383871, PMCID: PMC11418744, DOI: 10.1007/s10439-024-03440-0.Peer-Reviewed Original ResearchEffects of angiotensin II infusionMouse-to-mouse variationAngiotensin II-induced hypertensionRegional vascular structuresII-induced hypertensionAngiotensin II-infused miceAngiotensin II infusionWild-type miceDescending thoracic aortaGroups of miceSuprarenal abdominal aortaEffects of hypertensionCentral arterial stiffnessDepressed hemodynamicsII infusionIndicator of hypertensionSystemic hypertensionRenovascular diseaseCardiac functionInduced hypertensionDistal aortaThoracic aortaEffects of anesthesiaMouse modelAbdominal aorta
2023
Lonafarnib improves cardiovascular function and survival in a mouse model of Hutchinson-Gilford progeria syndrome
Murtada S, Mikush N, Wang M, Ren P, Kawamura Y, Ramachandra A, Li D, Braddock D, Tellides G, Gordon L, Humphrey J. Lonafarnib improves cardiovascular function and survival in a mouse model of Hutchinson-Gilford progeria syndrome. ELife 2023, 12: e82728. PMID: 36930696, PMCID: PMC10023154, DOI: 10.7554/elife.82728.Peer-Reviewed Original ResearchConceptsMouse modelLeft ventricular diastolic functionHutchinson-Gilford progeria syndromeVentricular diastolic functionPulse wave velocityDrug-associated effectsMTOR inhibitor rapamycinCardiovascular sequelaeDiastolic functionProgeria syndromeDevastating conditionCardiac functionCardiovascular functionClinical trialsCardiovascular diseaseMuscular arteriesUS FoodDrug AdministrationProgeria miceArterial structurePremature deathLonafarnibCardiovascular structureCharacteristics of agingInhibitor rapamycin
2022
122-LB: Effect of Dapagliflozin on Mitochondrial Metabolism and Cardiac Function in the Failing Heart
GOEDEKE L, MA Y, ZHANG J, GUERRERA N, WU X, ZHANG D, KAHN M, ZHANG X, YOUNG L, SHULMAN G. 122-LB: Effect of Dapagliflozin on Mitochondrial Metabolism and Cardiac Function in the Failing Heart. Diabetes 2022, 71 DOI: 10.2337/db22-122-lb.Peer-Reviewed Original ResearchDAPA treatmentLV ejection fractionEjection fractionHeart failureMI ratsCardiac outputMyocardial infarctionCardiac functionLeft ventricularEffect of dapagliflozinMale Sprague-DawleyPlasma glucose concentrationMalonyl-CoA contentMitochondrial oxidationKetone availabilityΒOHB levelsVehicle treatmentPermanent ligationSGLT2 inhibitionSGLT2 inhibitorsCardioprotective effectsCoronary arteryAcetyl-CoA contentFailing HeartMitochondrial metabolismPP1cβ dephosphorylates cardiac myosin by MYPT‐dependent and independent mechanisms
Lee E, Liu Z, Nguyen N, Nairn A, Chang A. PP1cβ dephosphorylates cardiac myosin by MYPT‐dependent and independent mechanisms. The FASEB Journal 2022, 36 DOI: 10.1096/fasebj.2022.36.s1.r3877.Peer-Reviewed Original ResearchMyosin light chain phosphataseRegulatory light chainCardiac myosinSmooth muscleNormal cardiac functionMain catalytic subunitSmooth muscle contractionMyosin light chain kinaseMyosin phosphatase targetCardiac functionPP1cβLight chain kinaseCatalytic subunitAccessory subunitsConstitutive phosphorylationProtein stabilityLight chain phosphataseKnockout animalsMuscle contractionMuscle pathogenesisConditional knockoutCardiac muscle myosinCardiac myocytesCardiac musclePhosphatase activity
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply