2025
Cardiac Magnetic Resonance Imaging in Immune Checkpoint Inhibitor–Related Myocarditis
Hammer M, Tysarowski M, Fuss C, Bader A. Cardiac Magnetic Resonance Imaging in Immune Checkpoint Inhibitor–Related Myocarditis. Echocardiography 2025, 42: e70131. PMID: 40067334, DOI: 10.1111/echo.70131.Peer-Reviewed Original ResearchConceptsImmune-related adverse eventsImmune checkpoint inhibitorsCardiac magnetic resonance imagingMagnetic resonance imagingAssociated with immune-related adverse eventsCardiac immune-related adverse eventsMechanisms of immune checkpoint inhibitorsICI-associated myocarditisICI-related myocarditisResonance imagingPersonalized cancer immunotherapySevere cardiovascular complicationsImmune tolerance pathwayCheckpoint inhibitorsCancer immunotherapyCardiac complicationsCombination therapyTumor cytotoxicityClinical presentationCardiovascular complicationsAdverse eventsTherapeutic efficacyOncological treatmentTherapeutic strategiesMyocarditisThe worldview of Akkermansia muciniphila, a bibliometric analysis
Zhang Z, Wang J, Dang S, Liu X, Zhang Y, Zhang H. The worldview of Akkermansia muciniphila, a bibliometric analysis. Frontiers In Microbiology 2025, 16: 1500893. PMID: 40104597, PMCID: PMC11913835, DOI: 10.3389/fmicb.2025.1500893.Peer-Reviewed Original ResearchSensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs
Dong C, Zhang F, He E, Ren P, Verma N, Zhu X, Feng D, Cai J, Zhao H, Chen S. Sensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs. Patterns 2025, 6: 101184. DOI: 10.1016/j.patter.2025.101184.Peer-Reviewed Original ResearchParalogous gene pairsParalogous pairsChimeric antigen receptor T cellsResponse to cancer immunotherapyDouble knockoutCancer immunotherapy responseGene pairsCheckpoint blockadeGenome-wide screenImmunotherapy efficacyCancer immunotherapyEnhance immunotherapyImmunotherapy responseImmunotherapy effectT cellsImmunotherapyCancer treatmentIndividual genesCRISPR screensEnrichment analysisParalogsCancerTreatmentCombined targetFunctional significanceReal-world outcomes with T-VEC in patients with anti-PD-1 resistant in-transit disease from melanoma and Merkel cell carcinoma
Su D, McNamara M, Kaszycki M, Frey A, Ishizuka J, Costa P, Tran T, Kluger H, Clune J, Weiss S, Olino K. Real-world outcomes with T-VEC in patients with anti-PD-1 resistant in-transit disease from melanoma and Merkel cell carcinoma. Surgical Oncology Insight 2025, 2: 100120. DOI: 10.1016/j.soi.2024.100120.Peer-Reviewed Original ResearchMerkel cell carcinomaMerkel cell carcinoma casesT-VECCell carcinomaMedian numberAnti-PD-1 blockadeStage IIIB-IV melanomaAdvanced Merkel cell carcinomaIn-transit melanomaIn-transit diseaseICI therapyTalimogene laherparepvecAdvanced melanomaCancer immunotherapyMetastatic sitesPartial responseIn-transitRegional metastasesMedian ageGrade 3Adverse eventsTreatment cyclesDisease progressionMelanomaPatientsAn antibody–toxin conjugate targeting CD47 linked to the bacterial toxin listeriolysin O for cancer immunotherapy
Schrank B, Wang Y, Wu A, Tran N, Lee D, Edwards J, Huntoon K, Dong S, Ha J, Ma Y, Grippin A, Jeong S, Antony A, Chang M, Kang M, Gallup T, Koong A, Li J, Yun K, Kim B, Jiang W. An antibody–toxin conjugate targeting CD47 linked to the bacterial toxin listeriolysin O for cancer immunotherapy. Nature Cancer 2025, 6: 511-527. PMID: 40000910, DOI: 10.1038/s43018-025-00919-0.Peer-Reviewed Original ResearchConceptsAntibody-toxin conjugatesTumor cellsImmune recognition of tumor cellsEnhanced antigen cross-presentationRecognition of tumor cellsCancer cell phagocytosisTumor-derived antigensToxin listeriolysin OTumor-derived peptidesImproved animal survivalPromote immune recognitionCytosolic immune sensorsIntracellular bacterium Listeria monocytogenesTreatment in vivoTreating multiple cancersPhagocytosis checkpointsCheckpoint blockadeCancer immunotherapySignal CD47Listeriolysin OMetastatic breastMelanoma tumorsTherapeutic strategiesAnimal survivalCell phagocytosisHIF regulates multiple translated endogenous retroviruses: Implications for cancer immunotherapy
Jiang Q, Braun D, Clauser K, Ramesh V, Shirole N, Duke-Cohan J, Nabilsi N, Kramer N, Forman C, Lippincott I, Klaeger S, Phulphagar K, Chea V, Kim N, Vanasse A, Saad E, Parsons T, Carr-Reynolds M, Carulli I, Pinjusic K, Jiang Y, Li R, Syamala S, Rachimi S, Verzani E, Stevens J, Lane W, Camp S, Meli K, Pappalardi M, Herbert Z, Qiu X, Cejas P, Long H, Shukla S, Van Allen E, Choueiri T, Churchman L, Abelin J, Gurer C, MacBeath G, Childs R, Carr S, Keskin D, Wu C, Kaelin W. HIF regulates multiple translated endogenous retroviruses: Implications for cancer immunotherapy. Cell 2025 PMID: 40023154, DOI: 10.1016/j.cell.2025.01.046.Peer-Reviewed Original ResearchClear cell renal cell carcinomaCancer immunotherapyAntigen-specific T cell responsesAllogeneic stem cell transplantationEndogenous retrovirusesClear cell renal cell carcinoma patientsLow mutational burdenCell renal cell carcinomaStem cell transplantationT cell responsesRenal cell carcinomaVHL tumor suppressor geneTumor suppressor geneHLA-bound peptidesEndogenous retrovirus expressionNon-ccRCCCell transplantationMutational burdenSpontaneous regressionCell carcinomaT cellsCase reportSuppressor geneHIF transcription factorsImmunotherapyAuthor Correction: Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy
Zhang F, Chow R, He E, Dong C, Xin S, Mirza D, Feng Y, Tian X, Verma N, Majety M, Zhang Y, Wang G, Chen S. Author Correction: Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. Nature Biotechnology 2025, 1-1. PMID: 39901026, DOI: 10.1038/s41587-025-02576-1.Peer-Reviewed Original ResearchtRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells
Miao S, Li H, Song X, Liu Y, Wang G, Kan C, Ye Y, Liu R, Li H. tRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells. Journal Of Experimental Medicine 2025, 222: e20240559. PMID: 39873720, PMCID: PMC11774205, DOI: 10.1084/jem.20240559.Peer-Reviewed Original ResearchConceptsCD8+ T cellsT cellsTumor-killing functionTransfer RNARegulating cholesterol biosynthesisAntitumor immunityCapacity of CD8+ T cellsActivation of CD8+ T cellsCholesterol biosynthesisM1A modificationTumor-killing capacityAntitumor responseATP citrate lyaseCancer immunotherapyCD8Effector functionsMetabolic reprogrammingProtein translationBiosynthetic demandsCitrate lyaseIn vitro assaysIn vivoPosttranscriptional mechanismsRegulatory checkpointsBiosynthesisMultiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy
Zhang F, Chow R, He E, Dong C, Xin S, Mirza D, Feng Y, Tian X, Verma N, Majety M, Zhang Y, Wang G, Chen S. Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. Nature Biotechnology 2025, 1-14. PMID: 39820813, DOI: 10.1038/s41587-024-02535-2.Peer-Reviewed Original ResearchAdeno-associated virusTumor microenvironmentImmunosuppressive genesAntitumor efficacyCD8+ T cell infiltrationIn vivo antitumor efficacyCombinatorial cancer immunotherapyImmunosuppressive tumor microenvironmentSyngeneic tumor modelsT cell infiltrationTumor microenvironment remodelingMulti-agent combinationsMultiple tumor typesAntitumor immunityCombinatorial immunotherapyOptimal immunotherapyCancer immunotherapyGene alterationsTumor typesTumor modelReduced neutrophilLiver toxicityShRNA treatmentWhole-transcriptome profilingImmunotherapyAutogene cevumeran with or without atezolizumab in advanced solid tumors: a phase 1 trial
Lopez J, Powles T, Braiteh F, Siu L, LoRusso P, Friedman C, Balmanoukian A, Gordon M, Yachnin J, Rottey S, Karydis I, Fisher G, Schmidt M, Schuler M, Sullivan R, Burris H, Galvao V, Henick B, Dirix L, Jaeger D, Ott P, Wong K, Jerusalem G, Schiza A, Fong L, Steeghs N, Leidner R, Rittmeyer A, Laurie S, Gort E, Aljumaily R, Melero I, Sabado R, Rhee I, Mancuso M, Muller L, Fine G, Yadav M, Kim L, Leveque V, Robert A, Darwish M, Qi T, Zhu J, Zhang J, Twomey P, Rao G, Low D, Petry C, Lo A, Schartner J, Delamarre L, Mellman I, Löwer M, Müller F, Derhovanessian E, Cortini A, Manning L, Maurus D, Brachtendorf S, Lörks V, Omokoko T, Godehardt E, Becker D, Hawner C, Wallrapp C, Albrecht C, Kröner C, Tadmor A, Diekmann J, Vormehr M, Jork A, Paruzynski A, Lang M, Blake J, Hennig O, Kuhn A, Sahin U, Türeci Ö, Camidge D. Autogene cevumeran with or without atezolizumab in advanced solid tumors: a phase 1 trial. Nature Medicine 2025, 31: 152-164. PMID: 39762422, PMCID: PMC11750724, DOI: 10.1038/s41591-024-03334-7.Peer-Reviewed Original ResearchConceptsCD8+ T cellsAdvanced solid tumorsT cellsSolid tumorsCirculating CD8+ T cellsEfficacy of cancer immunotherapyTumor-infiltrating T cellsStimulate T cell responsesResponse to immunotherapyT cell responsesPreliminary antitumor activityPhase 1 studyPhase 1 trialDose escalationPretreated patientsCancer immunotherapyEvaluation of pharmacokineticsCD4+Tumor lesionsTreatment initiationTumor tissuesAtezolizumabClinical activityDisease characteristicsImmunotherapy
2024
Immunogenicity of cell death and cancer immunotherapy with immune checkpoint inhibitors
Catanzaro E, Beltrán-Visiedo M, Galluzzi L, Krysko D. Immunogenicity of cell death and cancer immunotherapy with immune checkpoint inhibitors. Cellular & Molecular Immunology 2024, 22: 24-39. PMID: 39653769, PMCID: PMC11685666, DOI: 10.1038/s41423-024-01245-8.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsImmunogenic cell deathImmunogenic cell death inducerCheckpoint inhibitorsRefractory to immune checkpoint inhibitorsImmunogenicity of cell deathFraction of patientsCombinatorial treatment strategiesAdaptive immune responsesCell deathCombinatorial partnersCancer immunotherapyCombinatorial regimensClinical findingsClinical managementTreatment strategiesClinical activityImmune responseImmunotherapyPatientsCancerOncology settingInhibitorsDeathInducerThe type 2 cytokine Fc–IL-4 revitalizes exhausted CD8+ T cells against cancer
Feng B, Bai Z, Zhou X, Zhao Y, Xie Y, Huang X, Liu Y, Enbar T, Li R, Wang Y, Gao M, Bonati L, Peng M, Li W, Tao B, Charmoy M, Held W, Melenhorst J, Fan R, Guo Y, Tang L. The type 2 cytokine Fc–IL-4 revitalizes exhausted CD8+ T cells against cancer. Nature 2024, 634: 712-720. PMID: 39322665, PMCID: PMC11485240, DOI: 10.1038/s41586-024-07962-4.Peer-Reviewed Original ResearchCD8+ T cellsMammalian target of rapamycinCancer immunotherapyT cellsNext-generation cancer immunotherapyAdoptive T-cell transferImmune checkpoint blockade therapyLong-term complete remissionCurrent cancer immunotherapiesCheckpoint blockade therapyInduce durable remissionsT-cell transferCD8+ TCytokine-based immunotherapyType 2 cytokinesXenograft tumor modelBlockade therapyDurable remissionsComplete remissionAntitumour efficacyTumor modelTarget of rapamycinInterleukin-4Immune responseCD8Carbohydrate-Lectin Interactions Reprogram Dendritic Cells to Promote Type 1 Anti-Tumor Immunity
Lensch V, Gabba A, Hincapie R, Bhagchandani S, Basak A, Alam M, Noble J, Irvine D, Shalek A, Johnson J, Finn M, Kiessling L. Carbohydrate-Lectin Interactions Reprogram Dendritic Cells to Promote Type 1 Anti-Tumor Immunity. ACS Nano 2024, 18: 26770-26783. PMID: 39283240, PMCID: PMC11646345, DOI: 10.1021/acsnano.4c07360.Peer-Reviewed Original ResearchCellular immunityDendritic cellsToll-like receptorsVirus-like particlesCD8<sup>+</sup> T cellsTumor-specific cellular immunityVaccine developmentCancer vaccine developmentInfiltrate solid tumorsMurine melanoma modelT cell functionInhibited tumor growthActivate TLR signalingTumor controlCancer immunotherapyCD4<sup>+</sup>Melanoma modelTLR7 agonistDC activationT cellsSolid tumorsTumor cellsTumor growthHumoral immunityVLP platformTofacitinib for the treatment of immune-related adverse events in cancer immunotherapy: a multi-center observational study
Liu Q, Liu M, Zou Z, Lin J, Zhang N, Zhao L, Zhou J, Zhou H, Zhou X, Jiao X, Yu Y, Liu T. Tofacitinib for the treatment of immune-related adverse events in cancer immunotherapy: a multi-center observational study. Journal Of Translational Medicine 2024, 22: 803. PMID: 39210332, PMCID: PMC11360683, DOI: 10.1186/s12967-024-05617-6.Peer-Reviewed Original ResearchConceptsImmune-related adverse eventsImmune checkpoint inhibitorsManagement of immune-related adverse eventsOverall survivalTofacitinib treatmentAdverse eventsTreatment of immune-related adverse eventsCancer patientsImmune checkpoint inhibitor initiationImmune checkpoint inhibitor myocarditisSteroid-resistant casesTreated with tofacitinibClinical remission rateResultsFifty-three patientsSafety of tofacitinibCardiac troponin TLife-threatening casesMulti-center observational studyAnti-tumor activityMultiple autoimmune diseasesBackgroundTreatment strategiesCheckpoint inhibitorsMedian OSSteroid taperCancer immunotherapyA Minimalist Pathogen‐Like Sugar Nanovaccine for Enhanced Cancer Immunotherapy
Miao Y, Niu L, Lv X, Zhang Q, Xiao Z, Ji Z, Chen L, Liu Y, Liu N, Zhu J, Yang Y, Chen Q. A Minimalist Pathogen‐Like Sugar Nanovaccine for Enhanced Cancer Immunotherapy. Advanced Materials 2024, 36: e2410715. PMID: 39210649, DOI: 10.1002/adma.202410715.Peer-Reviewed Original ResearchCancer immunotherapyMaturation of antigen-presenting cellsVaccine carriersImmune checkpoint blockade therapyAntigen-specific immune responsesInhibition of tumor growthCheckpoint blockade therapyEnhanced cancer immunotherapyAntigen-presenting cellsVaccine delivery technologiesB16-OVABlockade therapyImmune activationTumor modelTumor growthAntigen loadNanovaccineImmune responseMeticulous screeningAntigenic peptidesImmunostimulatory characteristicsChain ratioDelivery technologiesImmunotherapyIn vivoCAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cellular & Molecular Immunology 2024, 21: 1089-1108. PMID: 39134804, PMCID: PMC11442786, DOI: 10.1038/s41423-024-01207-0.Peer-Reviewed Original ResearchCAR-natural killerCAR-T cellsCAR-TSolid tumorsHematologic malignanciesCell therapyChimeric antigen receptor (CAR)-T cell therapyImmuno-suppressive tumor microenvironmentCAR-T cell therapyCellular cancer immunotherapyRelapsed/refractory hematologic malignanciesCAR-NK cellsTumor traffickingAdoptive immunotherapyCell immunotherapyCellular immunotherapyCancer immunotherapyImmunotherapeutic approachesHLA compatibilityTumor microenvironmentAdult patientsImmunotherapyCombat cancerTumorMalignancyShort-term cultured tumor fragments to study immunotherapy combinations based on CD137 (4-1BB) agonism
Eguren-Santamaría I, Rodríguez I, Herrero-Martin C, de Piérola E, Azpilikueta A, Sánchez-Gregorio S, Bolaños E, Gomis G, Molero-Glez P, Chacón E, Mínguez J, Chiva S, Diez-Caballero F, de Andrea C, Teijeira Á, Sanmamed M, Melero I. Short-term cultured tumor fragments to study immunotherapy combinations based on CD137 (4-1BB) agonism. OncoImmunology 2024, 13: 2373519. PMID: 38988823, PMCID: PMC11236292, DOI: 10.1080/2162402x.2024.2373519.Peer-Reviewed Original ResearchConceptsTumor fragmentsImmunotherapy combinationsIFNg productionActivation markersClinical response to PD-1 blockadeResponse to PD-1 blockadeAgonistic anti-CD137 mAbAnti-PD-1 treatmentAnti-CD137 mAbAnti-PD-1PD-1 blockadeSyngeneic immunocompetent miceInfiltrating T cellsShort-term cultureUnmet medical needAnti-CD137Contralateral tumorsBilateral tumorsCancer immunotherapyTissue culture supernatantsImmunocompetent miceSolid malignanciesT cellsMAb combinationsMouse tumorsSynergistic Immunoregulation: harnessing CircRNAs and PiRNAs to Amplify PD-1/PD-L1 Inhibition Therapy
Han R, Rao X, Zhou H, Lu L. Synergistic Immunoregulation: harnessing CircRNAs and PiRNAs to Amplify PD-1/PD-L1 Inhibition Therapy. International Journal Of Nanomedicine 2024, 19: 4803-4834. PMID: 38828205, PMCID: PMC11144010, DOI: 10.2147/ijn.s461289.Peer-Reviewed Original ResearchConceptsRegulate PD-L1 expressionPD-L1 expressionPD-1/PD-L1Inhibition therapySensitive to immune checkpoint inhibitorsEfficacy of cancer immunotherapyPD-1/PD-L1 inhibitorsImmune checkpoint inhibitorsAnti-cancer immunityEfficacy of monotherapyExploration of combination strategiesModulate immune responsesMRNA vaccine technologyCheckpoint inhibitorsCancer immunotherapyRNA-based therapiesTreatment strategiesImmunomodulatory effectsCancer therapyImmune responseTherapyCancer treatmentVaccine technologyCombination strategiesCancerUp-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris P, Pearson M, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely M, Zhang Y, Zhang J, Ji L, Flies D, Liu L, Langermann S, LaRochelle W, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper K, Sanmamed M, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Science Immunology 2024, 9: eadh2334. PMID: 38669316, DOI: 10.1126/sciimmunol.adh2334.Peer-Reviewed Original ResearchConceptsT cell infiltrationT cell exclusionT cellsResistance to anti-PD-1 immunotherapyPoor T-cell infiltrationAnti-PD-1 immunotherapyImmunogenic mouse tumorsT cell mobilizationHuman cancer tissuesTherapeutic immunotherapyCancer immunotherapyMouse tumorsChemokine systemImmunotherapyTumor tissuesImpaired infiltrationTumorLipid metabolitesHuman cancersCancer tissuesInfiltrationA2 groupCancerPLA2G10Up-regulatedNanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy
Wang-Bishop L, Wehbe M, Pastora L, Yang J, Kimmel B, Garland K, Becker K, Carson C, Roth E, Gibson-Corley K, Ulkoski D, Krishnamurthy V, Fedorova O, Richmond A, Pyle A, Wilson J. Nanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy. ACS Nano 2024, 18: 11631-11643. PMID: 38652829, PMCID: PMC11080455, DOI: 10.1021/acsnano.3c06225.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsTumor microenvironmentLipid nanoparticlesBreast cancerResponse to ICIResponse to immune checkpoint inhibitorsInfiltration of CD8<sup>+</sup>Models of triple-negative breast cancerCD4<sup>+</sup> T cellsInhibition of tumor growthTriple-negative breast cancerRIG-IIonizable lipid nanoparticlesLung metastatic burdenIncrease tumor immunogenicityBreast tumor microenvironmentSignaling in vitroACTLA-4Immunogenic melanomaCheckpoint inhibitorsTumor immunogenicityImmunotherapeutic modalitiesCancer immunotherapyMetastatic burdenAPD-1
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply