2025
PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors
DeSpenza T, Kiziltug E, Allington G, Barson D, McGee S, O’Connor D, Robert S, Mekbib K, Nanda P, Greenberg A, Singh A, Duy P, Mandino F, Zhao S, Lynn A, Reeves B, Marlier A, Getz S, Nelson-Williams C, Shimelis H, Walsh L, Zhang J, Wang W, Prina M, OuYang A, Abdulkareem A, Smith H, Shohfi J, Mehta N, Dennis E, Reduron L, Hong J, Butler W, Carter B, Deniz E, Lake E, Constable R, Sahin M, Srivastava S, Winden K, Hoffman E, Carlson M, Gunel M, Lifton R, Alper S, Jin S, Crair M, Moreno-De-Luca A, Luikart B, Kahle K. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nature Neuroscience 2025, 28: 536-557. PMID: 39994410, DOI: 10.1038/s41593-024-01865-3.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsCongenital hydrocephalusCSF dynamicsIncreased CSF productionDe novo mutationsFrequent monogenic causeEverolimus treatmentCSF shuntingNonsurgical treatmentPTEN mutationsAqueductal stenosisInhibitory interneuronsVentriculomegalyProgenitor cellsChoroid plexusMonogenic causeCortical networksIncreased survivalBrain ventriclesCortical deficitsNeural progenitorsGene PTENCSF productionNkx2.1PTEN
2024
Loss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice
Kang R, Kim K, Jung Y, Choi S, Lee C, Im G, Shin M, Ryu K, Choi S, Yang E, Shin W, Lee S, Lee S, Papadopoulos Z, Ahn J, Koh G, Kipnis J, Kang H, Kim H, Cho W, Park S, Kim S, Kim E. Loss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice. PLOS Biology 2024, 22: e3002596. PMID: 38718086, PMCID: PMC11104772, DOI: 10.1371/journal.pbio.3002596.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderBehavioral phenotypesASD-relatedSocial communication deficitsAutism-related phenotypesEnlarged lateral ventriclesProgressive ventricular enlargementCommunication deficitsSpectrum disorderSynaptic deficitsEnlargement of brain ventriclesTranscriptomic changesMicrotubule-regulatory proteinsGenes down-regulatedBrain ventriclesVentricular enlargementLateral ventricleDeficitsHippocampal neuronsMotile ciliaKATNAL2Potential treatmentDown-regulationCiliary functionEpendymal cells
2022
A neural stem cell paradigm of pediatric hydrocephalus
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cerebral Cortex 2022, 33: 4262-4279. PMID: 36097331, PMCID: PMC10110448, DOI: 10.1093/cercor/bhac341.Peer-Reviewed Original ResearchConceptsPediatric hydrocephalusPrimary treatment strategyOptimal surgical managementDevelopmental brain malformationsAnimal model studiesSurgical managementCerebral ventricleCSF diversionVentricular distentionHydrocephalic childrenTreatment strategiesBrain malformationsNeurodevelopmental disabilitiesGerminal neuroepitheliumHydrocephalusStem cell paradigmNeural stem cell fateRecent human geneticBrain surgeryCSF circulationBrain ventriclesCSF volumeNeuroprogenitor cellsBrain defectsCSF homeostasisBrain ventricles as windows into brain development and disease
Duy PQ, Rakic P, Alper SL, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. Brain ventricles as windows into brain development and disease. Neuron 2022, 110: 12-15. PMID: 34990576, PMCID: PMC9212067, DOI: 10.1016/j.neuron.2021.12.009.Peer-Reviewed Original Research
2021
Genomic approaches to improve the clinical diagnosis and management of patients with congenital hydrocephalus.
Allington G, Duy PQ, Ryou J, Singh A, Kiziltug E, Robert SM, Kundishora AJ, King S, Haider S, Kahle KT, Jin SC. Genomic approaches to improve the clinical diagnosis and management of patients with congenital hydrocephalus. Journal Of Neurosurgery Pediatrics 2021, 29: 168-177. PMID: 34715668, DOI: 10.3171/2021.8.peds21368.Peer-Reviewed Original ResearchManagement of patientsCongenital hydrocephalusFuture clinical trialsCongenital brain disordersOutcome prognosticationUnderlying pathogenesisClinical trialsCurative strategiesTreatment stratificationIncomplete clearanceDiagnostic adjunctPatient benefitClinical practiceBrain disordersBrain ventriclesClinical diagnosisGenetic counselingHuman genetic studiesHydrocephalusPatientsPathogenesisNeurosurgical communitySubsequent enlargementRecent findingsMolecular nomenclatureGenomics of human congenital hydrocephalus
Kundishora AJ, Singh AK, Allington G, Duy PQ, Ryou J, Alper SL, Jin SC, Kahle KT. Genomics of human congenital hydrocephalus. Child's Nervous System 2021, 37: 3325-3340. PMID: 34232380, DOI: 10.1007/s00381-021-05230-8.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusBrain developmentPoor neurodevelopmental outcomesRecent whole-exome sequencing studiesPost-surgical patientsHuman congenital hydrocephalusPathogenesis of hydrocephalusCerebrospinal fluid accumulationDamaging de novoPrimary pathomechanismEarly brain developmentNeural stem cell growthNeurodevelopmental outcomesOutcome prognosticationHuman brain developmentCSF diversionTreatment stratificationWhole-exome sequencing studiesFluid accumulationBrain ventriclesClinical toolHydrocephalusGenetic counselingDisease mechanismsSubstantial minority
2020
Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine 2020, 26: 1754-1765. PMID: 33077954, PMCID: PMC7871900, DOI: 10.1038/s41591-020-1090-2.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusPoor neurodevelopmental outcomesPost-surgical patientsCerebrospinal fluid accumulationNeural stem cell biologyGenetic disruptionWhole-exome sequencingPrimary pathomechanismEarly brain developmentNeurodevelopmental outcomesHigh morbidityCSF diversionMutation burdenFluid accumulationBrain ventriclesCH casesBrain developmentDe novo mutationsPatientsExome sequencingCSF dynamicsDisease mechanismsHydrocephalusNovo mutationsCell typesInflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets
Karimy JK, Reeves BC, Damisah E, Duy PQ, Antwi P, David W, Wang K, Schiff SJ, Limbrick DD, Alper SL, Warf BC, Nedergaard M, Simard JM, Kahle KT. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nature Reviews Neurology 2020, 16: 285-296. PMID: 32152460, PMCID: PMC7375440, DOI: 10.1038/s41582-020-0321-y.Peer-Reviewed Original ResearchConceptsPosthaemorrhagic hydrocephalusPostinfectious hydrocephalusNeurosurgical disordersPathogenic mechanismsToll-like receptor 4Pathogenesis of hydrocephalusImportant protective responseEpendymal denudationCommon neurosurgical disorderSustained inflammationInflammatory mediatorsNeuroinflammatory conditionsImmune cellsReceptor 4Therapeutic approachesReparative inflammationCerebrospinal fluidCSF pathwaysHydrocephalusTherapeutic targetInflammationTherapeutic interventionsBrain ventriclesProtective responsePhysical irritants
2019
Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus
Date P, Ackermann P, Furey C, Fink IB, Jonas S, Khokha MK, Kahle KT, Deniz E. Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus. Scientific Reports 2019, 9: 6196. PMID: 30996265, PMCID: PMC6470164, DOI: 10.1038/s41598-019-42549-4.Peer-Reviewed Original ResearchConceptsCSF flow dynamicsCongenital hydrocephalusOptical coherence tomographyCH pathophysiologyVentricular systemCoherence tomographyBrain developmentCurrent treatment modalitiesHuman congenital hydrocephalusCerebrospinal fluid flowAqueductal stenosisCerebral ventricleNeurosurgical indicationsTreatment modalitiesSurgery techniquesBrain ventriclesEpendymal ciliaCSF flowCiliary dysfunctionHuman L1CAMHydrocephalus pathogenesisVivo investigationsHydrocephalusPathophysiologyVentricle
2018
De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018, 99: 302-314.e4. PMID: 29983323, PMCID: PMC7839075, DOI: 10.1016/j.neuron.2018.06.019.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusNeural stem cell fateHuman congenital hydrocephalusDamaging de novoCerebrospinal fluid homeostasisSubstantial morbidityCH patientsTherapeutic ramificationsSignificant burdenBrain ventriclesCH pathogenesisNeural tube developmentFluid homeostasisDe novo mutationsExome sequencingAdditional probandsHydrocephalusPathogenesisNovo mutationsNovo duplicationProbandsDe novoCell fateMorbidityPatientsBrain Iron Distribution after Multiple Doses of Ultra-small Superparamagnetic Iron Oxide Particles in Rats.
Gorman A, Deh K, Schwiedrzik C, White J, Groman E, Fisher C, Gillen K, Spincemaille P, Rasmussen S, Prince M, Voss H, Freiwald W, Wang Y. Brain Iron Distribution after Multiple Doses of Ultra-small Superparamagnetic Iron Oxide Particles in Rats. Comparative Medicine 2018, 68: 139-147. PMID: 29663939, PMCID: PMC5897970.Peer-Reviewed Original ResearchConceptsSerum iron levelsHigh cumulative dosesWashout periodCumulative dosesIron levelsBrain ventriclesIron depositionMale Sprague-Dawley ratsUltra-small superparamagnetic iron oxide particlesQuantitative susceptibility mapsEnd of dosingSerum iron concentrationSprague-Dawley ratsBrain iron distributionGradient-echo MRIMultiple dosesBrain parenchymaSuperparamagnetic iron oxide particlesIron biodistributionFrequent administrationHistologic analysisParamagnetic iron oxideIron accumulationTime pointsDoses
1983
3COMPARISON OF THEEFFECTS OF HISTAMINE H2-RECEPTOR ANTAGONISTS ON PROLACTIN SECRETION IN THE RAT.
NETTI C, GUIDOBONO F, OLGIATI V, SIBILIA V, PECILE A, Dannies P. 3COMPARISON OF THEEFFECTS OF HISTAMINE H2-RECEPTOR ANTAGONISTS ON PROLACTIN SECRETION IN THE RAT. Endocrinology 1983, 113: 412-414. PMID: 6305638, DOI: 10.1210/endo-113-1-412.Peer-Reviewed Original ResearchConceptsPRL releaseHistamine H2-receptor antagonistsSignificant PRL releaseH2-receptor antagonistsCentral neural controlPRL-releasing activityHistamine H2 receptorsPRL secretionBlocking actionProlactin secretionH2 receptorsSingle bolusBlood samplesHigh doseBlocking potencyPrompt increaseBrain ventriclesNeural controlDrugsCimetidineRanitidineRatsStimulating effectPRLSecretion
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply