2025
A Prospective Study of Conventionally Fractionated Dose Constraints for Reirradiation of Primary Brain Tumors in Children
McGovern S, Johnson J, Luo D, Nguyen K, McAleer M, Paulino A, Grosshans D, Baxter P, Zaky W, Thall P, Mahajan A. A Prospective Study of Conventionally Fractionated Dose Constraints for Reirradiation of Primary Brain Tumors in Children. International Journal Of Radiation Oncology • Biology • Physics 2025, 121: e13-e14. DOI: 10.1016/j.ijrobp.2024.11.049.Peer-Reviewed Original ResearchDose-volume constraintsSymptomatic brain necrosisRecurrent brain tumorsBrain tumorsBrain necrosisPrimary endpointDose constraintsProton therapyProspective studyRecurrent pediatric brain tumorsMedian overall survivalMedian prescription doseCourse of radiationResults Median ageTreated with radiationPediatric brain tumorsPrimary brain tumorProgression of diseaseBrain reirradiationDosimetric guidelinesDose escalationPrescription doseOverall survivalMedian intervalProspective trialsCurrent Advances in PARP1‐Targeted Theranostics
Tong J, Chen B, Volpi T, Li Y, Ellison P, Cai Z. Current Advances in PARP1‐Targeted Theranostics. Journal Of Labelled Compounds And Radiopharmaceuticals 2025, 68: e4135. PMID: 39995212, DOI: 10.1002/jlcr.4135.Peer-Reviewed Original ResearchConceptsPoly (ADP-ribose) polymerase 1Blood-brain barrierCentral nervous systemBlood-tumor barrierPotential clinical useBRCA mutationsHomologous recombination repair pathwayPARP inhibitorsPharmacodynamic evaluationPatient stratificationPersonalized oncologyPharmacological characteristicsClinical useBrain tumorsBrain barrierDiagnostic imagingPET imagingCancerNervous systemTherapeutic interventionsBrain cancerPathophysiological conditionsTreatment assessmentPARPiNeurological disorders
2024
Cognitive Control Network and Language Reorganization in Patients with Brain Tumors
Pasquini L, Napolitano A, Spitoni L, Schmid M, Dellepiane F, Jenabi M, Peck K, Holodny A. Cognitive Control Network and Language Reorganization in Patients with Brain Tumors. American Journal Of Neuroradiology 2024, ajnr.a8638. PMID: 39730156, DOI: 10.3174/ajnr.a8638.Peer-Reviewed Original ResearchCognitive control networkLanguage reorganizationResting-state fMRIHealthy controlsFunctional magnetic resonance imagingControl networkTask-based fMRIResting state networksRight-handed patientsCognitive controlLanguage lateralizationReorganize languageEffect of lateralitySpeech deficitsLaterality indexFMRIAge-matched healthy controlsRight-handednessPatient's speechBrain tumorsTask-basedCognitive networksIndependent component analysisMagnetic resonance imagingBrainHigh p16INK4A expression in glioblastoma is associated with senescence phenotype and better prognosis
Park S, Roh T, Tanaka Y, Kim Y, Park S, Kim T, Eom S, Park T, Park I, Kim S, Kim J. High p16INK4A expression in glioblastoma is associated with senescence phenotype and better prognosis. Neoplasia 2024, 60: 101116. PMID: 39724755, PMCID: PMC11729681, DOI: 10.1016/j.neo.2024.101116.Peer-Reviewed Original ResearchConceptsP16<sup>INK4a</sup> expressionImmune cell infiltrationTumor cellsCell infiltrationImmunologically active tumor microenvironmentInfiltration of T cellsActive tumor microenvironmentTERT promoter mutationsExtended overall survivalIsocitrate dehydrogenase (IDH)-wildtypeSecretion of chemokinesSenescent phenotypeMalignant brain tumorsIn vitro studiesEGFR amplificationOverall survivalTumor microenvironmentCDKN2A/2B deletionT cellsPrognostic markerImprove prognosisP16INK4a expressionPromoter mutationsTumorBrain tumorsTertiary amine modification enables triterpene nanoparticles to target the mitochondria and treat glioblastoma via pyroptosis induction
Gao X, Tang X, Tu Z, Yu J, Bao Y, Long G, Sheu W, Wu H, Liu J, Zhou J. Tertiary amine modification enables triterpene nanoparticles to target the mitochondria and treat glioblastoma via pyroptosis induction. Biomaterials 2024, 317: 123035. PMID: 39731842, PMCID: PMC11827167, DOI: 10.1016/j.biomaterials.2024.123035.Peer-Reviewed Original ResearchConceptsSurvival of tumor-bearing miceBrain tumorsEffective treatmentPenetrate brain tumorsEffective treatment of glioblastomaTumor-bearing micePrimary brain tumorTreatment of glioblastomaMitochondria-targeted effectsTreating glioblastomaCancer treatmentGlioblastomaEffective killingTherapeutic targetHexokinase inhibitorGBM cellsPyroptosis inductionMitochondriaTumorGlycyrrhetinic acidTargeting effectTreatmentDistinct epigenetic and transcriptional profiles of Epstein-Barr virus-positive and negative primary CNS lymphomas
Hai L, Friedel D, Hinz F, Hoffmann D, Doubrovinskaia S, Rohdjess H, Weidenauer K, Denisova E, Scheffler G, Kessler T, Kourtesakis A, Herold-Mende C, Henegariu O, Baehring J, Dietrich J, Brors B, Wick W, Sahm F, Kaulen L. Distinct epigenetic and transcriptional profiles of Epstein-Barr virus-positive and negative primary CNS lymphomas. Neuro-Oncology 2024, noae251. PMID: 39575767, DOI: 10.1093/neuonc/noae251.Peer-Reviewed Original ResearchPrimary CNS lymphomaEpstein-Barr virusB cell receptorCNS lymphomaTargeted therapyEpigenetic profilesB cellsDiffuse large B-cell lymphomaLarge B-cell lymphomaB-cell lymphomaPromoter region hypermethylationEBV oncogeneEBV lymphomasEBV- tumorsEPIC methylation arrayWnt/beta-catenin signalingEBV diseaseBiological subtypesUnsupervised cluster analysisInterleukin-10Promoter methylationLymphomaSyk kinase activityBrain tumorsMutational landscapeEPCO-35. GENOMIC CHARACTERIZATION OF GROWTH HORMONE SECRETING PITUITARY ADENOMAS
Alanya H, Yalcin K, Hilton B, Gultekin B, Mishra-Gorur K, McGuone D, Gunel M, Omay S, Erson-Omay Z. EPCO-35. GENOMIC CHARACTERIZATION OF GROWTH HORMONE SECRETING PITUITARY ADENOMAS. Neuro-Oncology 2024, 26: viii9-viii9. PMCID: PMC11553213, DOI: 10.1093/neuonc/noae165.0034.Peer-Reviewed Original ResearchGH-secreting pituitary adenomasWhole-exome sequencingPituitary adenomasGNAS mutationsCopy number variationsSporadic GH-secreting pituitary adenomasGrowth hormone (GH)-secreting pituitary adenomasGenomic profilingGrowth hormone secreting pituitary adenomaSecreting pituitary adenomasBlood samplesComprehensive genomic characterizationSomatic GNAS mutationsSingle nucleotide variantsMatched blood samplesGenomic instabilityAssessment of genomic instabilityStatistically significant differenceTumor sizeClinical featuresTumor samplesClinical dataTumorExome sequencingBrain tumorsNIMG-30. DEUTERIUM METABOLIC IMAGING (DMI) SHOWS A STRONG RELATION BETWEEN TUMOR GRADE AND GLUCOSE METABOLISM IN PRIMARY BRAIN TUMORS
Thaw-Poon S, Blondin N, Liu Y, Corbin Z, Baehring J, Omuro A, Moliterno J, Omay S, Fulbright R, de Graaf R, De Feyter H. NIMG-30. DEUTERIUM METABOLIC IMAGING (DMI) SHOWS A STRONG RELATION BETWEEN TUMOR GRADE AND GLUCOSE METABOLISM IN PRIMARY BRAIN TUMORS. Neuro-Oncology 2024, 26: viii201-viii201. PMCID: PMC11553074, DOI: 10.1093/neuonc/noae165.0795.Peer-Reviewed Original ResearchGrade 2 lesionsTumor gradeDeuterium metabolic imagingMetabolic imagingNon-enhancing tumor regionsBrain tumorsTumor-to-brain contrastTumour-specific valuesActive tumor tissueImage contrastVOI-based analysisGrade 4Evaluate disease progressionTesla MRI scannerFDG-PETGrade 3Lesion gradeTumor tissuesDisease progressionDisease stageOral administrationTumorObservational studyNormal brainContrast enhancementCentral nervous system tumors in adolescents and young adults: A Society for Neuro-Oncology Consensus Review on diagnosis, management, and future directions
Lim-Fat M, Bennett J, Ostrom Q, Touat M, Franceschi E, Schulte J, Bindra R, Fangusaro J, Dhall G, Nicholson J, Jackson S, Davidson T, Calaminus G, Robinson G, Whittle J, Hau P, Ramaswamy V, Pajtler K, Rudà R, Foreman N, Hervey-Jumper S, Das S, Dirks P, Bi W, Huang A, Merchant T, Fouladi M, Aldape K, Van den Bent M, Packer R, Miller J, Reardon D, Chang S, Haas-Kogan D, Tabori U, Hawkins C, Monje M, Wen P, Bouffet E, Yeo K. Central nervous system tumors in adolescents and young adults: A Society for Neuro-Oncology Consensus Review on diagnosis, management, and future directions. Neuro-Oncology 2024, 27: 13-32. PMID: 39441704, PMCID: PMC11726256, DOI: 10.1093/neuonc/noae186.Peer-Reviewed Original ResearchSociety for Neuro-OncologyCentral nervous systemTumor typesCentral nervous system germ cell tumorsCare of AYA patientsManagement of CNS tumorsBrain tumorsCause of cancer-related deathCentral nervous system tumorsAdvanced molecular testingGerm cell tumorsUnique tumor biologyNervous system tumorsCancer-related deathsMalignant brain tumorsHistological diagnosisYoung adultsWHO classificationAYA populationCell tumorsCNS tumorsTargeted therapyTumor biologyAYA patientsConsensus reviewP10.25.A STANDARDIZATION AND AUTOMATIZATION OF MEASURING AND REPORTING BRAIN METASTASIS OVER TIME BY LEVERAGING ARTIFICIAL INTELLIGENCE
Weiss D, Bousabarah K, Deuschl C, Chadha S, Ashraf N, Ramakrishnan D, Moawad A, Osenberg K, Schoenherr S, Lautenschlager J, Holler W, Westerhoff M, Schrickel E, Memon F, Moily N, Malhotra A, Lin M, Aboian M. P10.25.A STANDARDIZATION AND AUTOMATIZATION OF MEASURING AND REPORTING BRAIN METASTASIS OVER TIME BY LEVERAGING ARTIFICIAL INTELLIGENCE. Neuro-Oncology 2024, 26: v61-v61. PMCID: PMC11485790, DOI: 10.1093/neuonc/noae144.201.Peer-Reviewed Original ResearchReports of brain metastasesBrain metastasesInter-observer variabilityFollow-up imaging of patientsPost-Gamma knife radiosurgeryBrain tumorsRANO-BM criteriaFollow-up imagingBoard-certified neuroradiologistsTreatment response monitoringMean Dice coefficientImages of patientsNnU-Net segmentationManual diameter measurementsBM evaluationRANO-BMRetrospective studyTreatment regimenSpearman correlation coefficientInter-rater variabilityMRI reportsIdentified lesionsPercentual changePost-gammaNeuroradiologistsA brave new framework for glioma drug development
Hotchkiss K, Karschnia P, Schreck K, Geurts M, Cloughesy T, Huse J, Duke E, Lathia J, Ashley D, Nduom E, Long G, Singh K, Chalmers A, Ahluwalia M, Heimberger A, Bagley S, Todo T, Verhaak R, Kelly P, Hervey-Jumper S, de Groot J, Patel A, Fecci P, Parney I, Wykes V, Watts C, Burns T, Sanai N, Preusser M, Tonn J, Drummond K, Platten M, Das S, Tanner K, Vogelbaum M, Weller M, Whittle J, Berger M, Khasraw M. A brave new framework for glioma drug development. The Lancet Oncology 2024, 25: e512-e519. PMID: 39362262, DOI: 10.1016/s1470-2045(24)00190-6.Peer-Reviewed Original ResearchConceptsBrain tumorsBenefits of biopsyBrain tumor therapyLiquid biopsy technologiesTissue samplesPostoperative deficitsBiopsy techniqueBiopsy technologyEffective therapySurgical trialsClinical trialsTumor therapyResistance mechanismsTumorTherapyPatientsDrug developmentTissue analysisBrainTrialsTissueBiopsyGliomaRegulatory agenciesCASCADES, a novel SOX2 super‐enhancer‐associated long noncoding RNA, regulates cancer stem cell specification and differentiation in glioblastoma
Shahzad U, Nikolopoulos M, Li C, Johnston M, Wang J, Sabha N, Varn F, Riemenschneider A, Krumholtz S, Krishnamurthy P, Smith C, Karamchandani J, Watts J, Verhaak R, Gallo M, Rutka J, Das S. CASCADES, a novel SOX2 super‐enhancer‐associated long noncoding RNA, regulates cancer stem cell specification and differentiation in glioblastoma. Molecular Oncology 2024, 19: 764-784. PMID: 39323013, PMCID: PMC11887672, DOI: 10.1002/1878-0261.13735.Peer-Reviewed Original ResearchCancer stem cellsGlioma CSCsPresence of cancer stem cellsCancer stem cell compartmentPrimary malignant brain tumorGlioma cancer stem cellsMalignant brain tumorsCancer-specific mannerMedian survivalTumor recurrenceTreatment resistanceStem cell specificationRegulation of stemnessTumor developmentRegulation of Sox2Brain tumorsNeuronal lineageStem cellsGlioblastomaTherapeutic targetSOX2Cell RepositoryCell-specificTumorLong noncoding RNAsImmune landscape of oncohistone-mutant gliomas reveals diverse myeloid populations and tumor-promoting function
Andrade A, Annett A, Karimi E, Topouza D, Rezanejad M, Liu Y, McNicholas M, Gonzalez Santiago E, Llivichuzhca-Loja D, Gehlhaar A, Jessa S, De Cola A, Chandarana B, Russo C, Faury D, Danieau G, Puligandla E, Wei Y, Zeinieh M, Wu Q, Hebert S, Juretic N, Nakada E, Krug B, Larouche V, Weil A, Dudley R, Karamchandani J, Agnihotri S, Quail D, Ellezam B, Konnikova L, Walsh L, Pathania M, Kleinman C, Jabado N. Immune landscape of oncohistone-mutant gliomas reveals diverse myeloid populations and tumor-promoting function. Nature Communications 2024, 15: 7769. PMID: 39237515, PMCID: PMC11377583, DOI: 10.1038/s41467-024-52096-w.Peer-Reviewed Original ResearchConceptsMyeloid populationsTumor microenvironmentExpression of immune checkpoint markersImmune checkpoint pathwaysImmune checkpoint markersSyngeneic mouse modelTumor-promoting functionsCheckpoint markersMyeloid infiltrationImmune landscapeImmune infiltrationImmune lineagesMyeloid cellsLymphoid cellsTumor cellsMouse modelTumor formationBenefit of patientsTherapeutic benefitBrain tumorsGliomaTumorDysregulated epigenomeDual inhibitionInfiltrationAutocatalytic, Brain Tumor‐Targeting Delivery of Bardoxolone Methyl Self‐Assembled Nanoparticles for Glioblastoma Treatment
Ye Z, Sheu W, Qu H, Peng B, Liu J, Zhang L, Yuan F, Wei Y, Zhou J, Chen Q, Xiao X, Zhang S. Autocatalytic, Brain Tumor‐Targeting Delivery of Bardoxolone Methyl Self‐Assembled Nanoparticles for Glioblastoma Treatment. Small Science 2024, 4 DOI: 10.1002/smsc.202470027.Peer-Reviewed Original ResearchCell-specific cross-talk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone
Norton E, Whaley L, Jones V, Brooks M, Russo M, Morderer D, Jessen E, Schiapparelli P, Ramos-Fresnedo A, Zarco N, Carrano A, Rossoll W, Asmann Y, Lam T, Chaichana K, Anastasiadis P, Quiñones-Hinojosa A, Guerrero-Cázares H. Cell-specific cross-talk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone. Science Advances 2024, 10: eadn1607. PMID: 39110807, PMCID: PMC11305394, DOI: 10.1126/sciadv.adn1607.Peer-Reviewed Original ResearchConceptsBrain tumor-initiating cellsLateral ventricleNeuronal maturationMalignancy-associated phenotypesSubventricular zone contactIncreased expression of cathepsin BMalignant primary brain tumorTumor-initiating cellsAggressive malignant primary brain tumorPrimary brain tumorTumor microenvironment researchExpression of cathepsin BNeural stem/progenitor cellsCathepsin BInduction of senescenceStem/progenitor cellsCell-intrinsicSubventricular zoneCross-talkTherapeutic strategiesBrain tumorsIncreased expressionGBM biologyLentiviral knockdownGlioblastomaAutocatalytic, Brain Tumor‐Targeting Delivery of Bardoxolone Methyl Self‐Assembled Nanoparticles for Glioblastoma Treatment
Ye Z, Sheu W, Qu H, Peng B, Liu J, Zhang L, Yuan F, Wei Y, Zhou J, Chen Q, Xiao X, Zhang S. Autocatalytic, Brain Tumor‐Targeting Delivery of Bardoxolone Methyl Self‐Assembled Nanoparticles for Glioblastoma Treatment. Small Science 2024, 4 DOI: 10.1002/smsc.202400081.Peer-Reviewed Original ResearchBlood-brain barrierBardoxolone methylGlioblastoma multiformeBrain tumorsSurvival of miceSelf-assembled nanoparticlesInhibited GBM tumor growthEnhance drug penetrationGlioblastoma multiforme treatmentKill GBM cellsLack of effective drugsTumor growthDrug penetrationIntravenous administrationP28 peptideEffective drugsGlioblastoma treatmentTumorClinical applicationGBM cellsPeptide-conjugatesTreatmentBrainBardoxoloneGlioblastomaDNA damage response in brain tumors: A Society for Neuro-Oncology consensus review on mechanisms and translational efforts in neuro-oncology
Rahman R, Shi D, Reitman Z, Hamerlik P, de Groot J, Haas-Kogan D, D’Andrea A, Sulman E, Tanner K, Agar N, Sarkaria J, Tinkle C, Bindra R, Mehta M, Wen P. DNA damage response in brain tumors: A Society for Neuro-Oncology consensus review on mechanisms and translational efforts in neuro-oncology. Neuro-Oncology 2024, 26: 1367-1387. PMID: 38770568, PMCID: PMC11300028, DOI: 10.1093/neuonc/noae072.Peer-Reviewed Original ResearchConsensus reviewDNA damage responseIDH wild-type glioblastomaIDH-mutant gliomasClinical trial design considerationsMechanisms of resistanceTrial design considerationsCombination therapyDevelopment of DDR inhibitorsDNA damage response pathwayPreclinical modelsDamage responseDDR inhibitorsNeuro-oncologyBrain tumorsBiomarker developmentTherapyResponse to DNA damageDNA damageTranslational effortsTumorLaser interstitial thermal therapy for new and recurrent meningioma: a prospective and retrospective case series.
Chiang V, Pugazenthi S, Leidig W, Rodriguez A, Prabhu S, Haskell-Mendoza A, Fecci P, Placantonakis D, Abram S, Lega B, Kim A. Laser interstitial thermal therapy for new and recurrent meningioma: a prospective and retrospective case series. Journal Of Neurosurgery 2024, 141: 642-652. PMID: 38457795, DOI: 10.3171/2023.12.jns231542.Peer-Reviewed Original ResearchLaser interstitial thermal therapyInterstitial thermal therapyRecurrent meningiomasComplication rateTreatment optionsFollow-upCohort studyResistant to standard therapyBrain tumorsProgression-free survivalOutcome dataOverall survival rateRetrospective case seriesProspective multicenter registryPatients to dateThermal therapyStandard therapyMulticenter registryAblation coverageCase seriesTumor typesAdult patientsMedian lengthMeningiomasDisease progressionIDHwt glioblastomas can be stratified by their transcriptional response to standard treatment, with implications for targeted therapy
Tanner G, Barrow R, Ajaib S, Al-Jabri M, Ahmed N, Pollock S, Finetti M, Rippaus N, Bruns A, Syed K, Poulter J, Matthews L, Hughes T, Wilson E, Johnson C, Varn F, Brüning-Richardson A, Hogg C, Droop A, Gusnanto A, Care M, Cutillo L, Westhead D, Short S, Jenkinson M, Brodbelt A, Chakrabarty A, Ismail A, Verhaak R, Stead L. IDHwt glioblastomas can be stratified by their transcriptional response to standard treatment, with implications for targeted therapy. Genome Biology 2024, 25: 45. PMID: 38326875, PMCID: PMC10848526, DOI: 10.1186/s13059-024-03172-3.Peer-Reviewed Original ResearchConceptsGBM tumorsTumor microenvironmentNeoplastic cellsResponse to standard treatmentTreatment resistance mechanismsDifferentiated neoplastic cellsSurrounding normal brainResponder subtypesGBM stem cellsAssociated with distinct changesRecurrent tumorsIDHwt glioblastomasTargeted therapyIDH1 mutationStandard treatmentBrain neoplasmsTumorCancer-cellBrain tumorsEffective treatmentNeurotransmitter signalingStem cellsMesenchymal transitionPairs of pre-SubtypesPractical guidance for direct oral anticoagulant use in the treatment of venous thromboembolism in primary and metastatic brain tumor patients
Ranjan S, Leung D, Ghiaseddin A, Taylor J, Lobbous M, Dhawan A, Budhu J, Coffee E, Melnick K, Chowdhary S, Lu‐Emerson C, Kurz S, Burke J, Lam K, Patel M, Dunbar E, Mohile N, Peters K. Practical guidance for direct oral anticoagulant use in the treatment of venous thromboembolism in primary and metastatic brain tumor patients. Cancer 2024, 130: 1577-1589. PMID: 38288941, DOI: 10.1002/cncr.35220.Peer-Reviewed Original ResearchConceptsDirect oral anticoagulantsLow-molecular-weight heparinVenous thromboembolismIntracranial hemorrhageBrain tumorsEfficacy of direct oral anticoagulantsMetastatic brain tumor patientsRisk of intracranial hemorrhageTreatment of venous thromboembolismManagement of venous thromboembolismMetastatic brain tumorsOral anticoagulant useTreat venous thromboembolismOff-label useBrain tumor patientsBrain metastasesOral anticoagulantsAnticoagulant useTumor patientsClinical trialsPatientsClinical guidanceThromboembolismGlioblastomaHeparin
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply