2024
Immunological and microbial shifts in the aging rhesus macaque lung during nontuberculous mycobacterial infection
Cinco I, Napier E, Rhoades N, Davies M, Allison D, Kohama S, Bermudez L, Winthrop K, Fuss C, Spindel E, Messaoudi I. Immunological and microbial shifts in the aging rhesus macaque lung during nontuberculous mycobacterial infection. MBio 2024, 15: e00829-24. PMID: 38771046, PMCID: PMC11237422, DOI: 10.1128/mbio.00829-24.Peer-Reviewed Original ResearchConceptsNTM pulmonary diseaseIncreased disease severityNontuberculous mycobacteriaDisease severityBacterial DNAAged animalsAntigen-specific T cellsPulmonary diseaseAssociated with increased disease severityDysregulated macrophage responsePersistence of bacterial DNALack of animal modelsRhesus macaquesSingle-cell RNA sequencingNontuberculous mycobacterial infectionsImmune cell infiltrationRhesus macaque modelBacterial loadAged rhesus macaquesTesting novel therapeuticsRight caudal lobeLower respiratory microbiomeYears of ageMAH infectionMicrobial communities
2020
In utero human intestine harbors unique metabolomic features including bacterial metabolites
Li Y, Toothaker JM, Ben-Simon S, Ozeri L, Schweitzer R, McCourt BT, McCourt CC, Werner L, Snapper SB, Shouval DS, Khatib S, Koren O, Agnihorti S, Tseng G, Konnikova L. In utero human intestine harbors unique metabolomic features including bacterial metabolites. JCI Insight 2020, 5: e138751. PMID: 33001863, PMCID: PMC7710283, DOI: 10.1172/jci.insight.138751.Peer-Reviewed Original ResearchConceptsFetal immune systemIntestinal barrier integrityMicrobial-associated metabolitesHost-derived metabolitesBacterial DNAIntestinal immunityMaternal microbiomeIntestinal functionImmune regulationGastrointestinal tractIntestinal microbiomeFetal intestineBarrier integrityImmune systemHuman intestinal samplesIntestinal samplesIntestinal profileMicrobial encountersMetabolomic featuresBacterial metabolitesUteroNutrient metabolismMetabolitesRecent studiesMicrobiome
2018
p204 Is Required for Canonical Lipopolysaccharide-induced TLR4 Signaling in Mice
Yi Y, Jian J, Gonzalez-Gugel E, Shi Y, Tian Q, Fu W, Hettinghouse A, Song W, Liu R, He M, Qi H, Yang J, Du X, Xiao G, Chen L, Liu C. p204 Is Required for Canonical Lipopolysaccharide-induced TLR4 Signaling in Mice. EBioMedicine 2018, 29: 78-91. PMID: 29472103, PMCID: PMC5925582, DOI: 10.1016/j.ebiom.2018.02.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedCytokinesGenotypeImmunity, InnateInflammasomesInflammation MediatorsInterferon Regulatory Factor-3Interferon-betaLipopolysaccharidesMacrophage ActivationMacrophagesMiceMice, KnockoutModels, BiologicalNF-kappa BNuclear ProteinsPhosphoproteinsProtein BindingProtein MultimerizationRAW 264.7 CellsShock, SepticSignal TransductionToll-Like Receptor 4ConceptsPro-inflammatory cytokinesLPS challengeIRF-3 pathwayDimerization of TLR4Serum levelsLPS-TLR4TLR4 signalingNF-ĸBAnimal modelsPyrin domainInnate immunityExtracellular LPSInterferon-inducible p200 familyInfectious diseasesLPSMicePotential targetTLR4IFNCytokinesMacrophagesBacterial DNASignificant defectsDramatic reductionPathway
2011
Association of bacteria with hydrocephalus in Ugandan infants.
Li L, Padhi A, Ranjeva S, Donaldson S, Warf B, Mugamba J, Johnson D, Opio Z, Jayarao B, Kapur V, Poss M, Schiff S. Association of bacteria with hydrocephalus in Ugandan infants. Journal Of Neurosurgery Pediatrics 2011, 7: 73-87. PMID: 21194290, DOI: 10.3171/2010.9.peds10162.Peer-Reviewed Original ResearchConceptsUgandan infantsNeonatal sepsisPostinfectious hydrocephalusMajority of patientsMost patientsRecent infectionPolymerase chain reactionEffective treatmentPatientsPrevention strategiesHydrocephalusInfectionInfantsAcinetobacter speciesChain reactionAssociation of bacteriaBacterial DNAGram-negative bacteriaNegative bacteriaSepsisEnvironmental samplingSyndromeSeason infection
2000
Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88
Schnare M, Holt† A, Takeda K, Akira S, Medzhitov R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Current Biology 2000, 10: 1139-1142. PMID: 10996797, DOI: 10.1016/s0960-9822(00)00700-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsAntigens, DifferentiationB-LymphocytesCpG IslandsDendritic CellsDNADrosophila ProteinsEnzyme-Linked Immunosorbent AssayInterleukin-6Macrophages, PeritonealMembrane GlycoproteinsMiceMice, KnockoutMyeloid Differentiation Factor 88Receptors, Cell SurfaceReceptors, ImmunologicSignal TransductionToll-Like Receptor 2Toll-Like Receptor 4Toll-Like ReceptorsConceptsPathogen-associated molecular patternsPattern recognition receptorsInnate immune systemBacterial DNAFungal cell wallParticular sequence motifsParticular sequence contextCpG DNAToll-like receptorsAdaptor proteinSequence motifsAdaptor protein MyD88Signal transductionInnate immune recognitionToll familyCell wallSequence contextMolecular patternsDNAUnmethylated CpGRecognition receptorsProtein MyD88Immune systemPeptidoglycanDiverse group
1971
Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli
Rupp W, Wilde C, Reno D, Howard-Flanders P. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. Journal Of Molecular Biology 1971, 61: 25-44. PMID: 4947693, DOI: 10.1016/0022-2836(71)90204-x.Peer-Reviewed Original ResearchConceptsRecombinational repairSister duplexesColony-forming abilityPyrimidine dimersEscherichia coliDNA strandsComplete base sequenceExcision-defective mutantsUnirradiated cellsHeavy strandLight strandUltraviolet-irradiated Escherichia coliGenetic exchangeMutant bacteriaCell survivalCesium chloride gradientsAlkaline sucrose gradientsMolecular weightDNABase sequenceSucrose gradientsBacterial DNASubsequent replicationSingle strandsIntermediate density
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply