To:
Dockets Management Staff (HFA-305)
Food and Drug Administration
5630 Fishers Lane, Rm. 1061
Rockville, MD 20852.

October 4th, 2019

Dear Commissioner Sharpless:

With this letter we would like to provide new scientific data in support of the proposed rulemaking by the Food and Drug Administration for Harmful and Potentially Harmful Constituents (HPHC) in Tobacco Products, where FDA has proposed to add 19 new chemical toxicants that are present in tobacco products. We appreciate and agree with FDA that these 19 chemicals should be regarded as HPHC’s.

In our opinion, this proposed HPHC list does not include several hundreds of other chemicals and classes of chemicals (especially respiratory irritants) that are present in the tobacco products or delivered through use of these products. In this document, we specifically wanted to inform FDA about flavor-solvent adducts, a class of chemical compounds not declared previously in tobacco products and that have unexpected toxicological effects. These adducts that are generally called as flavor aldehyde-PG/VG acetals are rapidly formed in e-cigarette liquids after mixing of their constituents and under storage conditions between popular flavor-aldehydes like vanillin (vanilla), cinnamaldehyde (cinnamon), benzaldehyde (cherry), citral (citrus), anisaldehyde (anise/spice) and solvents propylene glycol and vegetable glycerine. Here, we present our most recently published research data on chemical, pharmacological and toxicological effects of these flavors-solvents adducts. [1] [2]

Sven-Eric Jordt, PhD
Associate Professor

Sairam Jabba, PhD
Senior Research Associate

Hanno C. Erythropel, PhD
Associate Research Scientist

1Duke University School of Medicine
Department of Anesthesiology
Durham NC 27710

2Center for Green Chemistry &
Green Engineering at Yale University
New Haven, CT 06511
In summary, our research on formation of flavor-solvent adducts and their toxicological effects demonstrated that:

1. Flavor aldehydes rapidly undergo a chemical reaction with the common e-liquid solvents propylene glycol (PG) and glycerol (VG) at room temperature (storage condition) to form new chemical species called Flavor aldehyde-solvent Acetals [1].

2. Flavor aldehyde-solvent acetalts have potent, stronger and increased respiratory irritation potential than their parent aldehydes (e.g. vanillin PG acetal vs. vanillin) [1]. This is indicated by acetalts potential to activate sensory irritant receptors, TRPA1 and TRPV1, that are expressed in sensory nerve endings innervating the lungs and airways.

3. Flavor aldehyde-solvent acetals were identified in commercial e-liquids in significant amounts, including in highly popular JUUL e-liquids [1,2].

4. Flavor aldehyde-solvent acetals reach the aerosol with high transfer efficiency, including in Juul vapor [1].

5. Detected acetals are sufficiently stable in aqueous environment (airway lining fluids) to exert a sensory and respiratory irritant effect [1].

Limitations:
1. These acetals potential for enhanced respiratory irritation was measured based on their ability to activate heterologously expressed sensory receptors (human TRPA1 and TRPV1) and not on any in-vivo rodent or human inhalation toxicity data.

Implications and Recommendations:
Our data clearly demonstrate that many popular flavoring chemicals can form novel chemical compounds that can have potent and efficacious effects in the respiratory system of mammals, effects that are mediated largely by the sensory irritant receptors like TRPA1 and TRPV1 ion channels in sensory nerve endings, leading to increase in TRPA1 or TRPV1 sensation of irritation. Based on these findings we are concerned that new respiratory irritant chemicals formed in e-cigarette liquids may increase respiratory irritation in vapers in addition to existing flavor chemicals that act as respiratory irritants. Especially in initiating and youth e-cigarette users who are mostly using popular sweet and candy flavors, where the addition of flavor will likely increase e-cigarette use, resulting in absorbance of higher amounts of potential HPHCs and increase in deposition of irritant flavor chemicals and adducts in the respiratory airways that can elicit an immune or inflammatory response or cause/exacerbate health issues.

Based on these findings, we recommend that,
1. FDA should require tobacco companies to list all the ingredients, including flavor chemicals, chemical byproducts formed either during storage or heating of the e-cigarette liquid or during generation of aerosol.
2. FDA should strictly regulate and not allow addition of flavor chemicals that are potential respiratory or sensory irritant or that elicit an immune or inflammatory response or cause/exacerbate health issues.
3. FDA should have a rule that directs tobacco companies to conduct inhalation toxicity studies for every chemical, especially flavor chemicals added to - and formed in e-cigarette liquids.
4. FDA mandate tobacco companies to determine NOAEL (No Observed Adverse Effect Levels) for inhalation, oral and dermal routes of various e-cigarette flavors and byproducts formed. The final flavor chemical concentrations in the e-cigarette liquid should be adjusted accordingly.

5. More importantly, FDA should include flavor aldehyde-solvent acetals that have stronger respiratory irritation potential in the HPHC’s list as respiratory irritants.

6. As solvent chemicals, PG and VG, are required to form these higher respiratory irritant acetals, it provides an additional rationale to include PG and VG in the HPHC’s list.

References:

Formation of flavorant–propylene Glycol Adducts With Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids

Hanno C. Erythropel PhD, Sairam V. Jabba PhD, Tamara M. DeWinter PhD, Melissa Mendizabal, Paul T. Anastas PhD, Sven E. Jordt PhD, Julie B. Zimmerman PhD

Abstract

Introduction: “Vaping” electronic cigarettes (e-cigarettes) is increasingly popular with youth, driven by the wide range of available flavors, often created using flavor aldehydes. The objective of this study was to examine whether flavor aldehydes remain stable in e-cigarette liquids or whether they undergo chemical reactions, forming novel chemical species that may cause harm to the user.

Methods: Gas chromatography was used to determine concentrations of flavor aldehydes and reaction products in e-liquids and vapor generated from a commercial e-cigarette. Stability of the detected reaction products in aqueous media was monitored by ultraviolet spectroscopy and nuclear magnetic resonance spectroscopy, and their effects on irritant receptors determined by fluorescent calcium imaging in HEK-293T cells.

Results: Flavor aldehydes including benzaldehyde, cinnamaldehyde, citral, ethylvanillin, and vanillin rapidly reacted with the e-liquid solvent propylene glycol (PG) after mixing, and upward of 40% of flavor aldehyde content was converted to flavor aldehyde PG acetals, which were also detected in commercial e-liquids. Vaping experiments showed carryover rates of 50%–80% of acetals to e-cigarette vapor. Acetals remained stable in physiological aqueous solution, with half-lives above 36 hours, suggesting they persist when inhaled by the user. Acetals activated aldehyde-sensitive TRPA1 irritant receptors and aldehyde-insensitive TRPV1 irritant receptors.

Conclusions: E-liquids are potentially reactive chemical systems in which new compounds can form after mixing of constituents and during storage, as demonstrated here for flavor aldehyde PG acetals, with unexpected toxicological effects. For regulatory purposes, a rigorous process is advised to monitor the potentially changing composition of e-liquids and e-vapors over time, to identify possible health hazards.

Implications: This study demonstrates that e-cigarette liquids can be chemically unstable, with reactions occurring between flavorant and solvent components immediately after mixing at room temperature. The resulting compounds have toxicological properties that differ from either the...
flavorants or solvent components. These findings suggest that the reporting of manufacturing ingredients of e-liquids is insufficient for a safety assessment. The establishment of an analytical workflow to detect newly formed compounds in e-liquids and their potential toxicological effects is imperative for regulatory risk analysis.

Introduction

The addition of characterizing flavors to combustible cigarettes is prohibited by regulatory measures in several jurisdictions, including the United States, Canada, and the European Union; however, these restrictions have not been extended to "e-liquids" used in electronic cigarettes (e-cigarettes). Along with the global increase in e-cigarette use, the variety of flavored e-liquids has risen, with currently more than 7000 flavors available. Among the most popular e-liquids are sweet and fruity flavors, a main driver for the appeal of e-cigarettes to youth. Fragrant aldehydes, such as vanillin and ethyl vanillin (vanilla flavor), benzaldehyde (cherry flavor), or cinnamaldehyde (cinnamon flavor), commonly serve as the characteristic flavorants. E-liquids are prepared by mixing the flavorants and nicotine with different ratios of the solvents propylene glycol (PG) and glycerol (VG for vegetable glycerin), which contain two and three alcohol moieties, respectively.

However, aldehydes and alcohols can undergo chemical reactions resulting in the formation of acetals (Figure 1). An acetalization reaction between an aldehyde (1) and PG (2) generally yields aldehyde PG acetal (3) with two chiral carbons (indicated with *), resulting in the formation of at least three stereoisomers; molecules with different bond orientation and therefore possibly different properties, including toxicological properties. Acetalization reactions are commonly used in synthetic organic chemistry to "protect" reactive aldehyde moieties from reacting further. Consequently, chemical reactions (ie, acetal formation) between e-liquid constituents are possible, suggesting that e-liquids can be unstable environments post-preparation. Indeed, recent analytical studies have reported the presence of flavor aldehyde acetals in e-liquids, in the headspace above e-liquids, and in e-cigarette vapors (e-vapor).

In the cases where manufacturers published ingredient lists of e-liquids (available online), only aldehydes, but not acetals, were listed among the flavorants, suggesting that these acetals form after mixing. The published analytical studies did not report the concentrations of the detected flavor aldehyde acetals in the respective e-liquids, and it remains unclear how frequently and how rapidly these compounds form and whether they remain stable during heating and vaporization in e-cigarettes. Beyond flavor aldehyde acetals, the presence of formaldehyde hemiacetals in e-vapors was reported, generated from formaldehyde reacting with a single alcohol moiety on PG or VG. Formaldehyde and other small aldehydes have been shown to form from PG or VG during vaporization. The presence of aldehydes in e-liquids and e-vapor, either as flavorants or chemical reaction products, has raised concerns because of their potential respiratory and cardiovascular toxicological effects. Respiratory sensory irritation is a first sign of potential toxicity of an inhaled chemical exposure, induced by chemical activation of chemosensory receptors in airway-innervating nerves. Respiratory sensory irritants are ranked according to their RD₅₀, the toxicological parameter denoting the exposure concentration causing a 50% drop in respiratory rates in rodents, and used to determine occupational and other exposure limits. Recent studies identified the transient receptor potential (TRP) ion channels, TRPA1 and TRPV1, as the receptors for irritant aldehydes in airway-innervating nerves, activated by the major tobacco smoke aldehyde, acrolein, and flavor aldehydes such as cinnamaldehyde, benzoaldehyde, and vanillin, and eliciting irritation responses, pain, and cardiovascular reflexes increasing stress and inflammation. In vitro tests quantifying the capability of a chemical to activate TRP irritant receptors are currently considered as replacements for the animal studies determining RD₅₀. It remains to be examined whether aldhyde PG acetals activate the same irritant mechanisms as their parent aldehydes and exhibit toxicological effects of concern.

The aims of this study were to determine whether: (1) aldehyde flavorants and PG yield acetals in e-liquid environments, (2) acetals are carried over into e-vapor, (3) acetals remain stable under physiological conditions, and (4) acetals activate TRP irritant receptors. A workflow is proposed for a comprehensive risk assessment of e-liquids and resulting e-vapors encompassing all compounds a user could be exposed to, including reaction products.

Materials and Methods

Acetal Formation Experiments

One hundred micrograms of benzaldehyde (100 µg, >99%; Sigma-Aldrich, St. Louis, MO), trans-cinnamaldehyde (98+%; Alfa Aesar, Haverhill, MA), citral (mixture of the structural isomers neral and geranial; 95%; Fisher Scientific, Waltham, MA) ethyl vanillin (99%), and vanillin (99%; both Sigma-Aldrich) were added to plastic vials containing 5 g PG (USP-FCC grade, Waltham, MA), or mixtures of PG/VG (anhydrous; AmericanBio, Natick, MA) at 70/30, 50/50, or 30/70 ratios by weight, to yield an aldehyde concentration of 20 mg/g. The experiments in pure PG were carried out in duplicate (light and dark) storage conditions. Vials were vigorously shaken once per day, and 100 µL samples were drawn, diluted, and injected into a gas chromatograph (GC). Using standard curves, samples were analyzed for their aldehyde and PG acetal content (vanillin PG acetal [97%], ethyl vanillin PG acetal [98%, both Bedoukian Research, Danbury, CT], benzaldehyde PG acetal [>98%], trans-cinnamaldehyde PG acetal [both Sigma-Aldrich], citral PG acetal synthesized in-house, see Supplementary Material for details). Results are presented as mole fraction of formed acetal, defined as moles of acetal divided by the combined number of moles of acetal and corresponding aldehyde.

Acetal Content of Commercial E-liquids

Two flavored e-liquids (cherry and vanilla) were purchased with PG/VG ratios of 100/0, 70/30, 50/50, 30/70, and 0/100, containing 12 mg/mL nicotine (AmericanLiquidStore, Wauwatosa, WI). Samples of all e-liquids were taken, the mass recorded, and diluted for GC injection. Using standard curves, aldehyde, aldehyde PG acetal, and nicotine (99%, Alfa Aesar) concentrations were determined.

Vaping Carryover Experiments

For the vaping experiments, 2 blank cartridges were purchased online and filled with 0.5 g e-liquid and used with the corresponding
Samples were diluted with 2 µL γ-DTPA (Fluorescein D, 1,1′-dioctadecyl 3,3,3′,3′-tetramethylindocarbocyanine perchlorate) and injected into a GC. Compound e-vapor concentration was calculated as total amount trapped in vapor divided by the mass change of the cartridge after 20 puffs. Carryover percentage was calculated by dividing e-vapor concentration by neat e-liquid concentration.

Acetal Aqueous Stability Testing
To assess the stability of the PG acetics in physiological solution, ultraviolet-visible (UV–VIS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy were used. The breakdown of vanillin PG acetal (starting concentration 100 µg/mL) to vanillin in Hanks balanced salts solutions buffer (Sigma-Aldrich), adjusted to pH 7.4, was monitored over time by UV–VIS spectroscopy at λ = 347 nm (Cary-3E; Varian, Palo Alto, CA). Breakdown of the other PG acetics in D2O (99.9 atom% D; Sigma-Aldrich) was monitored over time by 1H-NMR spectroscopy, comparing the appearing aldehyde signal at approximately δ = 9.6 ppm to the disappearing acetal doublet between δ = 5.6–5.9 ppm. 1H-NMR studies were carried out at starting concentrations of 150 µg/mL (benzaldehyde- and vanillin PG acetal) and 200 µg/mL (ethylvanillin PG acetal).

Gas Chromatography
A GC (GC-2010 Plus; Shimadzu, Kyoto, Japan) was used to quantify aldehydes, PG acetics, and nicotine. Citral and citral PG acetics were quantified as a combination of cis- and trans-isomers (see Supplementary Figure for an example of a chromatogram). For the acetal formation reaction, 100 µL samples were diluted with 1 mL of methanol (high-performance liquid chromatography [HPLC] grade, JT Baker) containing 1 g/L 1,4-dioxane (99+%, Alfa Aesar) as an internal standard. For the carryover experiments, the complete content of the cold-finger trap was taken up in 1 mL of methanol (JT Baker) containing 1 g/L 1,4-dioxane (99+%, Alfa Aesar) as an internal standard. See Supplementary Material for further GC method details. Calibration curves were prepared to calculate concentrations from peak area ratios of the compounds of interest to the internal standard.

Liquid Chromatography
A liquid chromatography–refractive index (LC–RI) (Shimadzu LC-20 system, Shimadzu, Kyoto, Japan) was used to determine PG and VG contents of commercial e-liquids. Method details are provided in the Supplementary Material. Samples were diluted with deionized water (HPLC grade, JT Baker) and 1,4-dioxane was added as an internal standard. Calibration curves of PG and VG were prepared to calculate concentrations from peak area ratios of compounds to the internal standard.

1H-NMR Spectroscopy
All 1H-NMR spectroscopy was carried out on an Agilent DD2 400 MHz NMR spectrometer, using D2O, methanol (CD OD), or chloroform (CDCl3; all at least 99.8% D, Cambridge Isotope Labs., Andover, MA).

Cell Culture
HEK-293T cells (ATCC, Manassas, VA; Cat# CRL-11268, RRID: CVCL_1926) were cultured in Gibco Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 units/mL penicillin, and 0.1 mg/mL streptomycin (all Fisher Scientific). Cells were plated on 100 mm tissue culture plastic dishes and grown overnight to 60–70% confluency. The cells were transiently transfected with either human TRPA1 or TRPV1 plasmid DNA (18 µg plasmid DNA/100 mm dish) for 16–24 hours using Fugene 6 transfection reagent (Promega, Madison, WI) and Gibco Opti-MEM (Fisher Scientific) according to manufacturer’s protocols. Cells were then resuspended and plated onto poly-d-lysine-coated (Sigma-Aldrich) 96-well black-walled plates at 50 000 cells per well and allowed to grow for another 16–24 hours before the experiments. Cells were maintained as monolayers at 5% CO2 and 37°C.

Calcium Influx Imaging
Calcium imaging was performed as described earlier. Briefly, the fluorescence calcium indicator FLIPR Calcium 6 dye (Molecular Devices, San Jose, CA) was applied to the cells, which were reconstituted in Hanks balanced salts solutions buffered at pH 7.4 using 20 mM HEPES buffer (both Sigma-Aldrich). A FlexStation III benchtop scanning fluorometer chamber (Molecular Devices) at 37°C was used to excite cells at 485 nm and the Ca2+ emission signal was recorded at 525 nm in intervals of 1.8 seconds. The change in fluorescence was measured and expressed as Fmax–F0, where Fmax is the maximum fluorescence and F0 is the basal fluorescence.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 7 software (La Jolla, CA), for one-way analysis of variance tests with Bonferroni post-tests, and Student’s t tests. A p value less than .05 was interpreted as significant, with p value less than .05 represented by *, p value of less than .01 by **, and p value less than .001 by ***.

Results
Acetal Formation and Presence in Laboratory-made and Commercial E-liquids
To investigate the formation kinetics of flavor aldehyde-PG acetals, commonly used flavor aldehydes were mixed with pure PG and sampled over 14 days while stored at room temperature (Figure 1); aldehydes tested were benzaldehyde, cinnamaldehyde, citral (mixture of the two structural isomers nerol and geranial), vanillin, and ethylvanillin, each at 20 mg/g, approximating the concentrations found in commercial e-liquids (Supplementary Figure 1). The PG acetal formation reactions were monitored in daylight and dark conditions with no significant...
Table 1. Overview of Compounds Tested: Compound and CAS Number, Boiling Point (bp), Observed Carryover from E-liquid to E-vapor, Calculated Half-lives Based on First-order Kinetics for Propylene Glycol (PG) Acetals in Two Different Aqueous Media, and EC\textsubscript{50} (Including 95% Confidence Interval [CI]) and Efficacy Compared to the Known Antagonists for Human TRPA1 and TRPV1 Ion Channels (1 mM Cinnamaldehyde and 3 µM Capsaicin, Respectively). Statistical Analysis Indicated for Differences Between Parent Aldehyde and Corresponding Acetal, for EC\textsubscript{50}s and Efficacies, Respectively Parent Aldehyde and Corresponding Acetal (ns Nonsignificant; *, *< .05; **, *< .01; ***, *< .001)

<table>
<thead>
<tr>
<th>Compound (CAS no.)</th>
<th>bp (°C)</th>
<th>Observed carryover range to e-vapor (%)</th>
<th>Half-life in D\textsubscript{2}O (HBSS buffer) (h)</th>
<th>Human TRPA1</th>
<th>Human TRPV1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EC\textsubscript{50} (95% CI)</td>
<td>Efficacy (to cinnamaldehyde)</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>178</td>
<td>51%–71%c</td>
<td>—</td>
<td>0.30 mM** (0.23 to 0.39)</td>
<td>91%**</td>
</tr>
<tr>
<td>(100-52-7)a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde PG acetal</td>
<td>230–232</td>
<td>47%–80%c</td>
<td>44 h</td>
<td>0.88 mM** (0.70 to 1.2)</td>
<td>93%**</td>
</tr>
<tr>
<td>Ethylvanillin</td>
<td>295</td>
<td>62%–71%d</td>
<td>—</td>
<td>0.17 mM** (0.13 to 0.22)</td>
<td>74%***</td>
</tr>
<tr>
<td>(121-32-4)b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylvanillin PG acetal</td>
<td>346–347</td>
<td>61%–71%d</td>
<td>70 h</td>
<td>0.69 mM** (0.57 to 0.81)</td>
<td>90%***</td>
</tr>
<tr>
<td>(68527-76-4)b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanillin</td>
<td>285</td>
<td>63%–71%d</td>
<td>—</td>
<td>0.18 mM** (0.12 to 0.28)</td>
<td>63%***</td>
</tr>
<tr>
<td>(121-33-5)b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanillin PG acetal</td>
<td>353</td>
<td>59%–65%d</td>
<td>34–39 h (48 h)</td>
<td>0.91 mM** (0.76 to 1.1)</td>
<td>93%***</td>
</tr>
<tr>
<td>(68527-74-2)b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine</td>
<td>247</td>
<td>52%–66%c</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(54-11-5)b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aSource: Sigma-Aldrich; bSource: Bedoukian Research, Danbury, CT; ce-liquid PG/VG range 100/0 to 5/95; de-liquid PG/VG range 100/0 to 40/60. HBSS = Hanks balanced salts solutions; VG = glycerol.
difference observed. Acetal mole fractions of the combined aldehyde and acetal content were measured by GC–flame ionization detector, and conversion rates and equilibrium concentrations were determined (Figure 1): cinnamaldehyde and citral conversions plateaued within the first day, at 92% and 88%, respectively. A small decline in PG acetal mole fractions was observed subsequently. Benzaldehyde PG acetal formed more slowly, reaching equilibrium around day 5 and exceeding 95% mole fraction. Ethylvanillin and vanillin were converted to PG acetals more slowly, reaching equilibrium after approximately 7 days, at ca. 50% and 40% mole fractions, respectively.

Figure 1. Top: general aldehyde propylene glycol (PG) acetal formation reaction involving an aldehyde 1 and PG 2, to form the PG acetal 3. The reversible reaction yields compound 3 with two stereocenters indicated by *; middle: reaction kinetics of formation of aldehyde PG acetals from aldehydes dissolved in PG at a concentration of 20 µg/g of aldehyde, displayed as mole fraction of PG acetal against time. Citral PG acetals quantified as combined cis- and trans-isomers. Mean of n = 2 experiments in daylight and dark storage shown; error bars indicate the measured range; inset: formation of cinnamaldehyde PG acetal in mixtures of PG and glycerol; bottom: mole fractions of PG acetal to aldehyde in commercial cherry- and vanilla-flavored e-liquids as a function of PG content, for benzaldehyde, ethylvanillin, and vanillin.
The effect of varying PG/VG ratios, which are commonly offered in commercial e-liquids, on the formation of cinnamaldehyde PG acetal was also evaluated (Figure 1 inset). When the PG/VG ratio was decreased, lower equilibrium concentrations of cinnamaldehyde PG acetal were observed. These findings demonstrate that the rate and amount of PG acetal formed varies for different aldehydes and depends on the ratio of PG/VG present.

To evaluate whether aldehyde PG acetals are present in commercial e-liquids, and whether their formation depends on PG content, a range of commercial vanilla (vanillin and ethylvanillin) and cherry (benzaldehyde)-flavored e-liquids were examined (Figure 1 and Supplementary Figure 1). The vanilla e-liquids tested in this study were purchased with PG contents of 0%, 30%, 50%, 70%, and 100% labeled as such by the vendor, however, LC–IR revealed that the actual PG contents were 60%, 70%, 80%, 85%, and 100%, respectively. For all three compounds shown in Figure 1, a trend toward increasing mole fraction of the respective acetal with increasing PG content of the e-liquid was observed, which means a higher proportion of flavor aldehyde was converted to the corresponding acetal. This effect was more pronounced for benzaldehyde PG acetal, especially at low PG content. These data demonstrate that the amounts of PG acetals present in commercial e-liquids are proportional to the ratio of PG/VG used to prepare the e-liquid. Further, they support the earlier finding that benzaldehyde reacts more readily with PG than vanillin or ethyl vanillin.

Compound Delivery to E-cigarette Vapor

During vaping, flavor aldehydes are aerosolized and deposited in the airways along with other constituents. To determine whether aldehyde PG acetals are also carried over into e-vapor, the concentrations of benzaldehyde, vanillin, ethylvanillin, their respective PG acetals, and nicotine were measured in cold-trapped e-vapor (Figure 2 and Supplementary Figure 2). Carryover rates for aldehydes and their corresponding acetals were very similar, amounting to approximately 50%–80% of their concentration in neat e-liquid (Table 1). Carryover rates did not vary statistically significantly with change in PG content, except for benzaldehyde at 5% and 100% PG content (Figure 2). Nicotine e-vapor carryover was also determined at rates close to 60% (Supplementary Figure 2) that is similar to rates reported in previous studies, thereby validating the used methodology for quantifying carryover. Taken together, these results suggest that similar to flavor aldehydes, a significant proportion of the aldehyde PG acetal will reach the airways during vaping.

Acetal Aqueous Stability

For aldehyde PG acetals to exert biological effects, acetals need to persist on deposition in the respiratory system. To determine whether aldehyde PG acetals undergo hydrolysis in physiological solution, UV–VIS and 1H-NMR spectroscopy were used. First, the hydrolysis of vanillin PG acetal to vanillin was monitored by UV–VIS spectroscopy in physiological Hanks balanced salts solutions buffer at pH 7.4, resembling the pH of airway lining fluid of healthy humans. A series of UV–VIS measurements followed the hydrolysis of vanillin PG acetal to pure vanillin by the growth of an absorption peak at 347 nm (Supplementary Figure 3). This technique is used to determine vanillin concentrations in foods, yet it is pH-dependent.

Figure 2. Carryover rates of benzaldehyde and benzaldehyde propylene glycol (PG) acetal from e-liquid to vapor generated by a first-generation e-cigarette, as a function of PG content of the neat e-liquid with the residual made up by glycerol (VG). Error bars represent the SD of at least n = 3 separate experiments (filled symbols), or the range when n = 2 (non-filled symbols). Statistical significance (*, p < .05) found only between benzaldehyde PG acetal 5% and 100%. Carryover results for vanillin, ethylvanillin, and nicotine are shown in Supplementary Figure 2.

Figure 3. Effects of vanillin and vanillin propylene glycol (PG) acetal on human sensory irritant receptors, TRPA1 and TRPV1, measured by fluorescent calcium imaging in HEK-293T cells. Responses were normalized to maximal cinnamaldehyde (for TRPA1) or capsaicin (for TRPV1) responses. Each point represents mean values of 15–21 independent measures from 4 experiments, and error bars show standard error of the mean. Results for benzaldehyde, ethylvanillin, and their corresponding PG acetals are shown in Supplementary Figure 4.
warranting the use of a buffered solution. Using first-order kinetics, the half-life of vanillin PG acetal under these conditions was determined to be approximately 48 hours (Table 1). Due to the absence of characteristic UV–VIS absorption peaks for the other aldehyde PG acetals, their hydrolysis was monitored by 'H-NMR in unbuffered D₂O. Vanillin PG acetal was used as control for comparison of methods and buffer effects, with a series of a 'H-NMR spectra shown in Supplementary Figure 3 indicating the disappearance of vanillin PG acetal (doublet peak at δ = 5.6–5.8) because of its conversion to vanillin (singlet peak δ = 9.6) over time. Similar series of spectra were recorded for the PG acetals of benzaldehyde and ethylvanillin. After peak integration, the half-lives of these three compounds in D₂O were calculated as 34–39 hours (vanillin PG acetal), 44 hours (benzaldehyde PG acetal), and 70 hours (ethylvanillin PG acetal) based on first-order kinetics (Table 1). A similar attempt to determine the aqueous stability of cinnamaldehyde PG acetal failed because of the very low solubility of the compound in D₂O. All measured half-lives are in the order of days, suggesting that the tested acetals are not instantly hydrolyzed once they reach the aqueous environment of the airway surfaces, warranting investigations of their potential biological effects.

Acetal Irritation Potential

To compare the effects of flavor aldehydes and their corresponding PG acetals on TRP irritant receptors, HEK-293T cells were used for heterologous expression of human TRPA1 and TRPV1 ion channels and fluorometric measurements of TRP-mediated Ca²⁺ influx.

Indeed, ethyl vanillin PG acetal, vanillin PG acetal, and benzaldehyde PG acetal robustly activated Ca²⁺ influx through TRPA1, with all three flavor aldehyde acetals as efficacious as the full TRPA1 agonist, cinnamaldehyde (>90% of maximum cinnamaldehyde response; Figures 3 and Supplementary Figure 4; Table 1). Further, all tested PG acetals activated TRPV1 with higher EC₅₀ values compared to their corresponding aldehydes, and interestingly, high concentrations of vanillin PG acetal and ethylvanillin PG acetal (at 3 mM and 10 mM, respectively) were more efficacious at activating TRPA1 than equivalent concentrations of their corresponding parent aldehydes (Table 1; Figure 3 and Supplementary Figure 4).

The flavor aldehyde PG acetals also had surprising effects on TRPV1, the vanilloid receptor: While benzaldehyde, ethylvanillin, and vanillin weakly activated TRPV1 only at high concentrations (>3 mM) close to their solubility limits, their corresponding PG acetals robustly activated TRPV1 at lower concentrations and with higher efficacies (Table 1, Figure 3 and Supplementary Figure 4). This effect on TRPV1 was most conspicuous when comparing vanillin and vanillin PG acetal (Table 1, Figure 3). Cinnamaldehyde PG acetal robustly activated TRPA1 and significantly activated TRPV1 at a nominal concentration of 500 μM; however, a dose–response relation could not be established because of limited solubility of the compound.

Discussion

In this study, a reaction between e-liquid constituents of aldehydic flavorants and PG to form acetal PG acetals is described. These compounds form in situ and are shown to be present in commercial e-liquids. Carryover experiments reveal that quantities of 50%–80% of the initial aldehyde concentration in the neat e-liquid are transferred to the e-vapor generated by a first-generation e-cigarette. The relative stability of these acetals to hydrolysis at physiological pH is demonstrated, implying that they persist after inhalation by the e-cigarette user. Finally, this study shows that the tested acetals activate respiratory irritant receptors with broader selectivities and higher potencies than their aldehyde precursors, suggesting that they may act as stronger airway irritants in e-cigarette users.

To pursue this study, several e-liquids with various PG/VG ratios were purchased online, however, their chemical analysis revealed that their contents were not accurately reflected by the composition on the label. This was evidenced by the measured differences in the component concentrations reported by the vendor versus those measured in the purchased e-liquid products (eg, PG/VG ratios in vanilla e-liquids). Several recent studies reported incorrectly labeled nicotine contents of e-liquids, including substantial amounts of nicotine detected in e-liquids labeled as “nicotine-free”, purchased in several different countries. In light of these reports, the deviating PG/VG ratios measured in this study add to the concerns about inaccurate labeling, and resulting unexpected toxicities of commercial e-liquids. Rapid regulatory action is needed to address the ongoing failure of some e-liquid manufacturers to provide labeling consistent with product contents to the public.

Acetal Formation and Presence in Laboratory-made and Commercial E-liquids

The reaction between aldehyde flavorants and PG to form an acetal occurs at conditions common during the mixing and storage of e-liquids by vendors and users alike. PG acetals formed from all of the tested aldehydic flavorants, including benzaldehyde, cinnamaldehyde, citral (mixture of the structural isomers neral and geranial), vanillin, and ethylvanillin, when mixed with PG (Figure 1). As mentioned in the Introduction section, aldehyde PG acetals contain two chiral carbons, and the two diastereomers can be distinguished in the NMR spectra (Supplementary Figure 3) and GC chromatograms (Supplementary Figure 5). It is interesting to note that the acetal formation kinetics differ for the tested aldehydes, which may be related to how quickly these molecules are solubilized by PG. Vanillin and ethylvanillin are both solid at room temperature, and while they partially dissolved in PG on initial mixing, dissolution was not complete until after 24 hours (observed visually). The slight decline in the concentrations of the PG acetals of cinnamaldehyde and citral at later times suggests that further reactions may occur in e-liquids: both compounds are α,β-unsaturated aldehydes, known to be relatively reactive.

Further experiments investigated how the amount of acetal formed can vary as a function of the PG/VG ratio. When the PG/VG ratio is decreased, the equilibrium concentration of the corresponding PG acetal was reduced (Figure 1 inset). Besides PG, VG can also form acetals with aldehydes, but because VG contains three alcohol moieties, a multitude of optical and structural isomers of VG acetals can form. At least four of such isomers are shown in a GC-MS chromatogram for cinnamaldehyde VG acetal (Supplementary Figure 6) and vanillin VG acetal (Supplementary Figure 7). Since no standard for cinnamaldehyde VG acetal nor vanillin VG acetal was available, they were not quantified.

Although previous studies detected flavor aldehyde acetals in commercial e-liquids, these were not quantified. In this study, substantial amounts of flavor aldehyde PG acetals were detected in the analyzed commercial e-liquids, with 15%–30% of the aldehyde converted to its corresponding PG acetal, and increasing acetal concentrations at higher PG contents. It is noteworthy that the mole fractions of acetals in the commercial e-liquids did not reach the same equilibrium levels as in the experimental mixtures of only PG and the aldehyde in question (Figure 1). This can be explained by the higher complexity of the commercial e-liquids that contain additional ingredients, including water and other compounds that...
can compete with PG to react with the aldehydes, or influence the reaction equilibrium. However, the same order of mole fractions is found in both the experimental and commercial mixtures: benzaldehyde PG acetal > ethylvanillin PG acetal > vanillin PG acetal. This study also showed that the tested e-liquids contained lower amounts of flavor aldehydes as the ratio of PG/VG in the e-liquid decreased (Supplementary Figure 1). In this case, this likely means that the "flavor base" was mixed in pure PG, and the appropriate amount of VG was added to create the final product.

Flavor aldehyde PG acetalts, including the compounds detected in this study (Table 1), are produced commercially as flavorants and scents for food, perfumes, cosmetics, and body care products. It is, therefore, possible that the acetalts were added directly to the commercial e-liquids. However, acetalts have never been listed in the e-liquid ingredient lists in the few cases where these were revealed, and are less economical than their corresponding aldehydes. They are prepared from the parent aldehyde, suggesting that the acetalts would generally be more costly, without a requisite gain in aroma as acetalts generally resemble the odor of the parent aldehyde, but are less pronounced. The odor is particularly important as the olfactory system (smell) is the dominating system with regards to a user's flavor perception of e-vapor.

Acetal Carryover to Vapor in E-cigarettes

The fate of flavor aldehydes during heating and vaporization in e-cigarettes, and their resulting toxicities, has been the subject of intense controversy. All PG acetalts discussed earlier exhibit higher boiling points than their corresponding aldehydes (Table 1), possibly impacting vaporization. Heating may also affect the stability of acetalts.

A substantial carryover of intact acetalts from commercial e-liquids into the e-vapor was observed, higher than 50% in all cases, with no correlation between boiling points and carryover ratios (Table 1; Figure 2 and Supplementary Figure 2). No major breakdown products of the acetalts could be detected in the e-vapor. Aldehydes and nicotine, while having divergent boiling points, were carried over at similar rates. Among the studied compounds, benzaldehyde has the lowest boiling point (178°C), yet its carryover rate was in the same range as for most other compounds, including those with very high boiling points, such as vanillin PG acetal (bp: 353°C; Table 1). To the best of our knowledge, only a few flavorant molecules with boiling points higher than 300°C are used in e-liquids, and boiling points of acetalts would not be expected to be much higher than those of vanillin PG acetal. This suggests that the most important parameter for compound carryover from e-liquid to e-vapor is its solubility in the solvents PG and VG rather than a compound's boiling point. Therefore, most flavorants, including solvent additives such as acetalts, are likely to reach the e-vapor in appreciable amounts.

Carryover of benzaldehyde PG acetal increased significantly with higher PG content of the e-liquid, with similar trends observed for the other PG acetalts (Figure 2 and Supplementary Figure 2). Previous studies reported similar observations for nicotine carryover at varying PG/VG ratios. It should be noted that the first-generation devices used in this study are not typically recommended for use with e-liquids with high VG contents because of their limited power, and this is likely to impact carryover rates, especially at low PG/VG ratios. Newer generation devices are much more powerful and are likely more effective in delivering flavorants as well as the described acetalts to the e-vapor, as has already been described for nicotine.

Acetal Stability

The formation of acetalts from an aldehyde and PG is reversible, with hydrolysis favored at acidic pH in aqueous solutions (Figure 1). The airway lining fluid in which e-vapor is deposited is slightly alkaline, 17,22 therefore, acetal hydrolysis is expected to occur at slower rates. Indeed, the half-lives of the acetalts measured in aqueous solution exceeded 36 hours, sufficient for substantial amounts of acetalts to be maintained in physiological fluids, potentially exerting direct effects on the airway lining fluids and underlying structures.

Recruitment of Additional Respiratory Irritant Receptors by Flavor Aldehyde PG Acetalts

Exposures to aldehydes cause respiratory irritation through activation of irritant receptors in sensory nerve endings in the airway lining. TRPA1 is the major aldehyde-activated receptor, responding during exposures to acrolein in tobacco smoke, formaldehyde, and flavor aldehydes such as cinnamaldehyde and benzaldehyde. 16,17,18 The vaniloid receptor, TRPV1, may also contribute to flavourant irritant effects as it is activated by vanillin-related compounds such as capsaicin, however, TRPV1 responds poorly to free aldehydes. The present study strongly suggests that flavor aldehyde PG acetalts are delivered to the airways of e-cigarette users, however, except benzaldehyde PG acetal, 34 it is unknown whether these compounds also activate irritant receptors. Our in vitro studies clearly demonstrate that the acetalts activate human TRPA1 irritant receptors with increased efficacies at the highest concentrations (Figure 3 and Supplementary Figure 4). Also, higher concentrations of vanillin and ethyl vanillin seem to be desensitizing TRPA1 and attenuating the ion-channel activation, whereas their corresponding PG acetalts do not demonstrate ion-channel desensitization or attenuation of response. Although vanillin, ethylvanillin, and benzaldehyde had only negligible effects on TRPV1, their corresponding PG acetalts robustly activated this receptor (Figure 3 and Supplementary Figure 4; Table 1). These observations suggest that the tested flavorant aldehyde PG acetalts may produce stronger sensory irritation effects than the free aldehydes alone, by recruiting additional sensory irritant receptors such as TRPV1. It remains to be investigated whether these effects occur in vivo, for example, by examining the respiratory irritation response in rodents to e-vapors containing PG acetalts, and by measuring inflammatory parameters. 19,35

The aldehydes and acetalts used in this study are listed as GRAS (generally regarded as safe) by the US Food and Drug Administration and the World Health Organization, as are several other PG acetalts, 41,42 but not furfural PG acetal. 43 Yet, GRAS status is based purely on ingestion safety when used as food additives, and cutaneous safety when used as scents. Currently, no data exist that would support inhalational safety of flavor aldehyde PG acetalts. Since TRPA1 and TRPV1 contribute to chronic pulmonary conditions such as asthma, the formation of more strongly irritating compounds in e-liquids is of concern. 39,44,45 Indeed, recent epidemiological and toxicological studies detected links between asthma frequency and e-cigarette use in adolescents and reported that vaporized e-liquids containing the same flavor aldehydes as tested in this study induce inflammation in human respiratory epithelia. 46 The current study warrants further investigation into possible toxic effects of inhaling flavoring PG acetalts by means of an e-cigarette, and one of the outcomes may be that GRAS status is not sufficient to deem certain flavor additives as safe for inhalation by an e-cigarette.
Implications

This study demonstrates the potential chemical instability of e-liquids: acetals can be formed between flavor aldehydes and the solvents PG and VG post-formulation, such as during mixing, shipping, and storage of e-liquids. This reaction starts almost immediately and continues over days, leading to significant acetal generation even though water is not removed actively from the reaction. Given the frequency at which aldehydes are used in e-liquids (eg, 11 different aldehydes found in 28 e-liquids,\(^6\) and a total of 126 aldehydes on the FEMA GRAS list\(^8\)), and that at least two PG- and four VG-acetal stereoisomers (and structural isomers of the latter) are formed during the acetalization reaction, a large number of distinct acetal compounds could potentially be present in e-liquids, each possibly with different reaction kinetics, aqueous stability, and most importantly, potentially different physiological and toxicological effects. It should be noted that in this study, the potential to activate irritant receptors was not separately tested for optical isomers (enantiomers or diastereomers), but it is well known that these can have very different physiological effects.\(^6,9\)

To comprehensively assess the risk of e-liquids, it is important to consider the complete life cycle of the e-liquid constituents from mixing through shipping and storage, heating, and oxidation in e-cigarette devices, stability in biological environments (eg, mouth, airways, and lungs) to toxicity potential for a variety of endpoints (Figure 4). Without this comprehensive framework, important classes of compounds, such as the PG acetals studied here, could be unintentionally neglected if they are not directly added and disclosed by e-liquid manufacturers. To fully assess the risk potential of e-liquid use for regulatory purposes, it is imperative that the compounds that a user will actually be exposed to are reported and evaluated, and not only the initial ingredients combined during manufacturing.\(^5,10\)

When selecting compounds to screen for potential toxicity concerns, the chemical instability of the given e-liquid, which will depend on the reactivity of the individual constituents, needs to be taken into account. These can undergo a multitude of reactions given the complex mixture environment of e-liquids, making the prediction of equilibrium concentrations of reaction products, including PG or VG acetals, extremely challenging. In addition, a comprehensive risk assessment should consider the potential reaction products that can result from heating and oxidation in the e-cigarette, requiring characterization and quantification of the e-vapor constituents for toxicity concerns.\(^9\) Finally, the biological stability of compounds present in the e-vapor should be considered, including interactions with pulmonary surfactants, as reactions may occur that change

Figure 4. Proposed comprehensive testing scheme for e-liquid regulation: beyond e-liquid ingredients reported by the supplier, the final e-liquid and vapor generated from it should be characterized, all compounds therein identified, and quantified. Using this final list of compounds an e-cigarette user would be exposed to, a hazard and risk assessment needs to be carried out to approve or disapprove an e-liquid, based on known inhalation toxicity values. If such values do not yet exist, they need to be determined, including measurements as presented in this article: aqueous stability mimicking the environment in the airways, irritation potential, and various toxicity endpoints regarding inhalation toxicity.

\(^{12}\) and a total of 126 aldehydes on the FEMA GRAS list\(^8\), the frequency at which aldehydes are used in e-liquids (eg, 11 different aldehydes found in 28 e-liquids,\(^6\) and a total of 126 aldehydes on the FEMA GRAS list\(^8\)), and that at least two PG- and four VG-acetal stereoisomers (and structural isomers of the latter) are formed during the acetalization reaction, a large number of distinct acetal compounds could potentially be present in e-liquids, each possibly with different reaction kinetics, aqueous stability, and most importantly, potentially different physiological and toxicological effects. It should be noted that in this study, the potential to activate irritant receptors was not separately tested for optical isomers (enantiomers or diastereomers), but it is well known that these can have very different physiological effects.\(^6,9\)

To comprehensively assess the risk of e-liquids, it is important to consider the complete life cycle of the e-liquid constituents from mixing through shipping and storage, heating, and oxidation in e-cigarette devices, stability in biological environments (eg, mouth, airways, and lungs) to toxicity potential for a variety of endpoints (Figure 4). Without this comprehensive framework, important classes of compounds, such as the PG acetals studied here, could be unintentionally neglected if they are not directly added and disclosed by e-liquid manufacturers. To fully assess the risk potential of e-liquid use for regulatory purposes, it is imperative that the compounds that a user will actually be exposed to are reported and evaluated, and not only the initial ingredients combined during manufacturing.\(^5,10\)

When selecting compounds to screen for potential toxicity concerns, the chemical instability of the given e-liquid, which will depend on the reactivity of the individual constituents, needs to be taken into account. These can undergo a multitude of reactions given the complex mixture environment of e-liquids, making the prediction of equilibrium concentrations of reaction products, including PG or VG acetals, extremely challenging. In addition, a comprehensive risk assessment should consider the potential reaction products that can result from heating and oxidation in the e-cigarette, requiring characterization and quantification of the e-vapor constituents for toxicity concerns.\(^9\) Finally, the biological stability of compounds present in the e-vapor should be considered, including interactions with pulmonary surfactants, as reactions may occur that change
the composition of the e-vapor and could result in new chemical products with unknown toxicities. This suggests that ingredient disclosure of e-liquids by suppliers may be insufficient to inform a comprehensive risk assessment of e-liquids and vaping more generally.

Supplementary Material
Supplementary data are available at Nicotine and Tobacco Research online.

Funding
This work was supported by the Yale Tobacco Center of Regulatory Sciences (TCORS) of the National Institutes of Health (P50-DA-036151) and the Center for Tobacco Products (CTP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Food and Drug Administration.

Declaration of Interests
None declared.

Acknowledgments
The authors would like to express their gratitude to Barry Green (PhD, Yale School of Medicine) and Kathryn Rosbrook from the John B. Pierce Laboratory for their valuable advice as well as for supplying the vanilla- and cherry-flavored e-liquids with varying PG/VG ratios. Dr Green and Ms Rosbrook did not receive financial compensation.

References

30. Farsalinos KE, Spyrou A, Tsipoupolou K, Stefopoulos C, Romagna G, Voudris V. Nicotine absorption from electronic cigarette use: comparison...

Formation of flavorant-propylene glycol adducts with novel toxicological properties in chemically unstable e-cigarette liquids

Hanno C. Erythropel, Ph.D.¹,², Sairam V. Jabba, Ph.D.²,³, Tamara M. deWinter, Ph.D.²,⁴, Melissa Mendizabal¹, Paul T. Anastas, Ph.D.¹,⁴,⁵,⁶, Sven E. Jordt, Ph.D.²,³*, Julie B. Zimmerman, Ph.D.¹,²,⁴*

¹ Department of Chemical and Environmental Engineering, Yale University, New Haven, CT
² Yale Tobacco Center of Regulatory Science (TCORS), Department of Psychiatry, Yale School of Medicine, New Haven, CT.
³ Department of Anesthesiology, Duke University School of Medicine, Durham, NC
⁴ School of Forestry and Environmental Studies, Yale University, New Haven, CT
⁵ Department of Chemistry, Yale University, New Haven, CT
⁶ School of Public Health, Yale University, New Haven, CT

Supplemental Material

Figure S1: Absolute concentrations of benzaldehyde and benzaldehyde PG acetal vs. PG content of tested cherry e-liquid (top row), and of vanillin, vanillin PG acetal, ethylvanillin, and ethylvanillin PG acetal vs. PG content of tested vanilla e-liquid.
Figure S2: Carryover rates of vanillin, ethylvanillin, their respective PG acetals, and nicotine from e-liquid to vapor generated by a first generation e-cigarette, as a function of PG content of the neat e-liquid. Error bars represent the standard deviation (SD) of at least n=3 separate experiments (filled symbols), or the range when n=2 (non-filled symbols).
Figure S3: **top**: UV/VIS spectra of vanillin PG acetal stored in HBSS buffer at pH=7.4 over time, and of an equimolar solution of pure vanillin at in the same solution (orange line); **bottom**: 1H-NMR spectra of vanillin PG acetal stored in D$_2$O over time. The disappearing doublet between $\delta=5.6$-5.8 stems from the PG acetal diastereomers as shown, and the singlet at ca. $\delta=9.6$ represents the aldehydic hydrogen as indicated.
Figure S4: Effects of benzaldehyde, ethylvanillin, and their corresponding PG acetals on human sensory irritant receptors, TRPA1 and TRPV1, measured by fluorescent calcium imaging in HEK293T cells. Responses were normalized to maximal cinnamaldehyde (TRPA1) or capsaicin (for TRPV1) responses. Each point represents mean values of 15-21 independent measures from 4 experiments, and error bars show SEM.
Figure S5: Part of GC chromatograms of cinnamaldehyde (CAD; black), vanillin (red), and citral (blue; mixture of cis and trans structural isomers neral and geranial) after storage in propylene glycol (PG) for 4.2 days, showing the formation of two diastereomers of the corresponding PG acetals for each aldehyde.
Figure S6: bottom: Part of GC chromatograms showing at least 2 stereoisomers of cinnamaldehyde propylene glycol acetal (blue; CAD PG acetal) and at least 4 stereo- and/or structural isomers of cinnamaldehyde glycerol acetal (purple; CAD VG acetal), respectively, after storage in PG and VG, respectively, for 3 days. Top insets show mass spectroscopy (MS) spectra of the specified peaks.
Figure S7: top: Part of GC chromatograms showing at least 2 stereoisomers of vanillin propylene glycol acetal (Vanillin PG acetal) and at least 4 stereo- and/or structural isomers of vanillin glycerol acetal (Vanillin VG acetal), respectively, after storage in a mixture of PG and VG for 4 days. Below, mass spectroscopy (MS) spectra of the specified peaks are shown.
Gas chromatography – Flame Ionization Detector (GC-FID) method:

The injection volume was 1µL and the injection was carried out with a split ratio of 300 at 250 ºC. To separate the injected sample an Agilent J&W DB-5 column (length 60 m, id 0.25 mm, 0.25µm film) was used under the following conditions: the oven was initially held at a temperature of 30 ºC for 7 min, then heated to 50 ºC at a rate of 10 ºC/min and held constant for 20 min, followed by a heating ramp to 310 ºC at a rate of 10 ºC/min and held constant for another 7 min. Helium (Airgas, Radnor, PA) was used as carrier gas and the detector was of the flame ionization type (FID) run at 325 ºC. Limit of quantification (LOQ) 50 µg/mL, limit of detection (LOD) 15 µg/mL , precision 1.38 %RSD (N=6), recovery 99.13% (N=9)

Liquid chromatography – Refractive Index (LC-RI) method:

For compound separation, an Aminex HPX-87H ion exclusion column (length 300 mm, id 7.8 mm, 9µm particle size, Bio-Rad, Hercules, CA) was used in isocratic mode, the mobile phase was a 5mM solution of sulphuric acid (95-98%) in HPLC grade water (both JT Baker, Center Valley, PA) at a flow rate of 0.6 mL/min, the injection loop used was 20 µL, the total run time was 30 min, and the system was coupled to a refractive index (RI) detector (Shimadzu RID-10A, Kyoto, Japan) set to 50 ºC. Limit of quantification (LOQ) 10 µg/mL, limit of detection (LOD) 3 µg/mL, precision 0.18 %RSD (N=6), recovery 99.84% (N=9).

Gas chromatography - mass spectroscopy (GC-MS):

A Perkin Elmer Clarus 580 with an Elite-5MS column (length 60 m, id 0.25 mm, 0.25µm film) coupled with a SQ 8 S MS detector was used to obtain compound separation and mass spectra shown in Figures S5 and S6. The above-described GC method was used, and the MS settings were EI+ mode with a 5min initial solvent delay.

Synthesis of citral PG acetals:

Citral (5 g, 32.8 mmol; mixture of cis and trans, 95 %, Fisher Scientific, Waltham, MA) and propylene glycol (4 g, 26.3 mmol; USP/FCC grade, Fisher Scientific) were mixed in a hermetically sealed vial and vigorously stirred at room temperature for 96 hours. The aqueous layer was removed in a separatory funnel, and the organic phase was injected at known concentrations (150, 300, 750, 1500, 3000 µg/mL) into the GC-FID. Since the injected mixture contained both citral PG acetals and pure citral, the respective citral PG acetals concentration was calculated by subtracting the amount of citral in the mixture (determined by a separate calibration curve) to obtain the values shown in Table S1 below (40, 89, 225, 452, 934 µg/mL). These values were used to construct the calibration curve of citral PG acetals.
Calibration curves

Calibration curves for were obtained by serial dilution of the compounds in question, using an appropriate solvent, which was methanol (JT Baker) containing 1 g/L 1,4-dioxane (Sigma-Aldrich) as internal standard for GC-FID, and water (HPLC grade, JT Baker) containing 1 g/L 1,4-dioxane as internal standard for LC-RI. The specific intervals of concentrations to construct the calibration curves for each compound are shown in Tables S1 and S2 below.

Table S1: Concentration intervals of compounds for calibration curve construction, analyzed by GC-FID.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Concentrations (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzaldehyde</td>
<td>50, 100, 250, 500, 1000, 2000</td>
</tr>
<tr>
<td>Cinnamaldehyde</td>
<td>50, 100, 250, 500, 1000, 2500, 5000</td>
</tr>
<tr>
<td>Citral<sup>a</sup></td>
<td>50, 100, 200, 500, 1000, 2000</td>
</tr>
<tr>
<td>Ethylvanillin</td>
<td>100, 250, 500, 1000</td>
</tr>
<tr>
<td>Vanillin</td>
<td>50, 100, 250, 500, 1000</td>
</tr>
<tr>
<td>Benzaldehyde PG acetal</td>
<td>100, 250, 500, 1000, 2000</td>
</tr>
<tr>
<td>Cinnamaldehyde PG acetal</td>
<td>50, 100, 500, 1000</td>
</tr>
<tr>
<td>Citral PG acetals<sup>b</sup></td>
<td>40, 89, 225, 452, 934</td>
</tr>
<tr>
<td>Ethylvanillin PG acetal</td>
<td>50, 100, 250, 500, 1000, 2000</td>
</tr>
<tr>
<td>Vanillin PG acetal</td>
<td>50, 100, 250, 500, 1000, 2000</td>
</tr>
<tr>
<td>Nicotine</td>
<td>100, 250, 500, 1000, 2500</td>
</tr>
</tbody>
</table>

^a combined peak areas of the structural isomers neral and geranial utilized. ^b combined peak areas of respective PG acetals of the structural isomers neral and geranial utilized.

Table S2: Concentration intervals of compounds for calibration curve construction, analyzed by LC-RI.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Concentrations (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene glycol (PG)</td>
<td>10, 100, 1000, 10000</td>
</tr>
<tr>
<td>Glycerin (VG)</td>
<td>10, 100, 1000, 10000</td>
</tr>
</tbody>
</table>
Flavorant–Solvent Reaction Products and Menthol in JUUL E-Cigarettes and Aerosol

Hanno C. Erythropel, PhD,1,2 Lucy M. Davis3, Tamara M. de Winter, PhD,2,4 Sven E. Jordt, PhD,2,5 Paul T. Anastas, PhD,4,6 Stephanie S. O’Malley, PhD,2 Suchitra Krishnan-Sarin, PhD,2 Julie B. Zimmerman, PhD1,2,4

INTRODUCTION

The “JUUL” e-cigarette is the best-selling e-cigarette on the U.S. market.1,2 JUUL refill “pods” contain nicotine benzoate salt and flavorants dissolved in a 30:70 ratio of propylene glycol (PG) and glycerol (VG) for vegetable glycerin. Nicotine benzoate is perceived as more satisfactory and less harsh, enabling the delivery of higher amounts of nicotine to users. As such, nicotine concentrations in JUUL e-liquids are higher (5%; 3% since August 2018) than in non-JUUL e-liquids (typically 0.3%–2.4%). JUUL e-liquids are available in several fruity flavors, known to be particularly appealing to youth.3 Common e-cigarette (including JUUL) flavorants include menthol and various aldehydes (e.g., vanillin); aldehydes are known to react with alcohols (e.g., PG and VG) to form acetals (structural and optical isomers).4 The inhalational safety of flavor aldehyde PG/VG acetics is unknown; however, a recent study found that several acetals, including vanillin PG acetal, activate pro-inflammatory irritant receptors more strongly than their parent compounds (e.g., vanillin).4,5

Despite the popularity of JUUL, little is known about the composition of JUUL aerosol. The aim of this study was to evaluate the carryover of vanillin and its reaction products with PG and VG, menthol, and nicotine benzoate from JUUL e-liquid to aerosol to understand potential human exposures.

METHODS

A JUUL device and pods of all eight flavors (Figure 1) were purchased online in 2018. For aerosol capture (both gas phase and microdroplets’), a custom-built vaping machine with liquid nitrogen−chilled traps was used as described previously.7 The puffing regime was 20 puffs of 2.8-second length, 79-mL volume, and a 30-second cooldown between puffs. Neat e-liquids and captured aerosol were diluted and analyzed by gas chromatography mass spectroscopy.4 Commercially available standards were used for quantification except for vanillin VG acetal, which were synthesized in house. Aerosol concentrations and percentage carryover were calculated per experiment by dividing the amount of compound trapped by the pod mass change, and as aerosol concentration over neat e-liquid concentration, respectively (Figure 1).

RESULTS

The reaction products vanillin PG acetal and vanillin VG acetal were detected in JUUL “Crème Brulée” e-liquid and carried over to aerosol at 68±4% (mean±95% CI, all n=3) and 59±20%, or 0.8±0.04 μg/puff and 2.0±0.5 μg/puff, respectively (Figure 1). Vanillin was carried over at 79±17%, resulting in the delivery of 7.9±0.8 μg/puff. Menthol was found in four of the eight tested flavors, and the menthol aerosol concentration of “Classic Menthol” and “Cool Mint” was 34±3 μg/puff and 38±12 μg/puff, respectively, which is comparable to mentholated cigarettes (29−392 μg/puff8 for ten puffs/cigarette; 10%−20% carryover to cigarette smoke9). Nicotine and benzoic acid carryover were 98±6% and 82±5% (5%-pods, n=21), and 102±4% and 80±14% (3%-pods, n=5), respectively. However, a statistical significance between e-liquid and aerosol concentrations was found only for benzoic acid (Figure 1). Absolute nicotine aerosol content (114±13 μg/puff, 5%-pods, 65±15 μg/puff, 3%-pods) was comparable to previous reports analyzing JUUL or combustible cigarettes (50−180 μg/puff; ten puffs/cigarette).10−12

From the 1Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut; 2Yale Tobacco Center of Regulatory Science (TCORS), Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; 3Yale-NUS College, Singapore, Singapore; 4School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut; 5Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; and 6School of Public Health, Yale University School of Medicine, New Haven, Connecticut

Address correspondence to: Julie B. Zimmerman, PhD, Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven CT 06511. E-mail: julie.zimmerman@yale.edu. 0749-3797/$36.00

https://doi.org/10.1016/j.amepre.2019.04.004

© 2019 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

DISCUSSION

This study is the first to report the presence of flavor aldehyde VG acetals in e-liquids and aerosols and expands the authors’ prior finding of flavor aldehyde PG acetals in commercial e-liquids. 4 JUUL e-liquids contain higher levels of vanillin VG acetals compared with vanillin PG acetal because of the higher VG:PG ratio. Flavor aldehyde–solvent acetal formation can be expected in any e-liquid–containing flavor aldehydes, including JUUL, at room temperature (e.g., without heating in the e-cigarette). 4 Furthermore, the possibility of other unintended chemical reactions between e-liquid constituents should be considered in future research.

Compounds present in JUUL e-liquids are delivered efficiently to the aerosol, exposing users to similar quantities of nicotine as cigarettes, to menthol in four of eight flavors, and to the PG and VG acetals of vanillin (“Crème Brulée”). Although vanillin PG/VG acetal aerosol carryover is slightly lower than nicotine, indicating possible acetal hydrolysis, appreciable amounts of acetals are present in the aerosol, which, if inhaled, may cause irritation and contribute to inflammatory responses. 4,5 The average vanillin puff concentration was 101 mg/m³. In comparison, chronic inhalational exposure to vanillin in occupational environments is limited to 10 mg/m³, raising the question of what long-term effects regular inhalation of vanillin at such doses and frequency (200 puffs/pod) might have. Aerosol menthol levels from “Fruit Medley” (5.3 ppm), which is not labeled as mentholated, and the other mentholated JUUL e-liquids (“Cool Cucumber”: 7.5 ppm, “Classic Menthol”: 63 ppm, and “Cool Mint”: 70 ppm) are sufficient to suppress respiratory irritation responses to aldehydes and tobacco smoke and increase nicotine intake. 4,5

Figure 1. Comparison of the concentrations of six compounds in neat e-liquid (background bars, varying shading) and captured aerosol (foreground bars, striped) for different JUUL flavors.

Note: Error bars represent 95% CI. Two-way ANOVAs with Bonferroni post-test results to compare neat e-liquids versus aerosol concentrations per compound were carried out using GraphPad Prism 8 software. A p-value of <0.05 was interpreted as significant: *** p<0.001.

a5%-nicotine flavors: Crème Brulée, Fruit Medley, Mango, Cool Cucumber, Cool Mint, Classic Menthol, Classic Tobacco, and Virginia Tobacco.
b3%-nicotine flavors: Cool Mint, and Virginia Tobacco.

PG, propylene glycol; VG, glycerol.
Future e-cigarette regulatory policy should address (1) the formation of new compounds with potential toxicological properties within e-liquids, (2) JUUL menthol levels that may increase nicotine intake, and (3) flavorant exposure effects in e-cigarette users as also recently highlighted by the U.S. Food and Drug Administration.

ACKNOWLEDGMENTS

The authors wish to thank Sofya Zeylikman, BFA, Dante Archan- geli, BS, and Larry Wilen, PhD, at the Center for Engineering Innovation & Design within the Yale School of Engineering & Applied Science for their advice and support to design and 3D-print custom-made connector pieces. Ms. Zeylikman, Mr. Archangeli, and Dr. Wilen did not receive compensation.

The funding organization had no role in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; the preparation, review, or approval of the manuscript; nor in the decision to submit the manuscript for publication. The content is solely the responsibility of the authors and does not necessarily represent the views of National institutes of Health (NIH) or the Food and Drug Administration (FDA).

LMD received funding from the Yale-NUS Summer Research Programme. This work was supported by the National Institute on Drug Abuse of NIH and the Center for Tobacco Products of the U.S. FDA under awards number P50DA036151 and U54DA036151 (Yale Center for the Study of Tobacco Products Use and Addiction: Flavors, Nicotine, and other Constituents; YCSTP).

Author contributions were as follows: HCE, SEJ, PTA, and JBZ conceptualized and designed the study; HCE and LMD acquired and analyzed the data; HCE interpreted the data; HCE and JBZ drafted the manuscript; HCE and JBZ revised the manuscript; HCE carried out statistical analysis; HCE, PTA and JBZ provided supervision; LMD, TMdW, SEJ, PTA, SSO, SK-S, and JBZ critically revised the manuscript for important intellectual content; TMdW supplied technical support; and SSO, SK-S, and JBZ obtained funding.

Dr. Jordt reports receiving personal fees from Hydra Bio- sciences LLC and Sanofi S.A. and nonfinancial support from GlaxoSmithKline Pharmaceuticals outside the submitted work. Dr. Krishnan-Sarin reports donated study medications from Novartis and Astra Zeneca for research project unrelated to the current work. She was also a member of the FDA Tobacco Product Scientific Advisory committee in 2012–2014 and 2015–2016. Dr. O’Malley reports the following unrelated to the current work: consultant/advisory board member for Alkermes, Amygdala, Indivior, Mitsubishi Tanabe, Opiant; a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative supported by Alkermes, Amygdala, Arbor Pharmaceuticals, Ethypharm, Lilly, Lundbeck, Otsuka, Pfizer, and Indivior; donated medications from Astra Zeneca, Novartis, and Pfizer; a grant from Lilly; and Data and Safety Monitoring Board member for the National Institute on Drug Abuse (Emmes Corporation). No other financial disclosures were reported by the authors of this paper.

REFERENCES

