## Appendices

For Strambler, M. J., Meyer, J. L., Irwin, C. W., \& Coleman, G. A. Kindergarten performance in early literacy: student, teacher, and classroom factors. New Haven, CT: Partnership for Early Education Research (PEER). December 2018. https://osf.io/vt8am/

## Appendix A: Study Methodology

After finalizing a Data Sharing Agreement with Yale University and EDC, Norwalk Public Schools shared demographic and assessment data for all kindergarten students in 2014/15 and 2015/16. The demographic data included English learner (EL) status, special education status, free or reduced-price lunch (FPRL) status, gender, race/ethnicity, and teacher name. The assessment data include DIBELS data from each of three assessment timepoints, specifically, numeric scores (continuous variables) and benchmark scores (categorical variables) for all kindergarten students assessed at the beginning, middle or end of the year. The district shared these data in four separate files: demographic data and DIBELS data for each year.

After receiving the student data, PEER merged the four files together based on state-assigned student identification numbers (SASIDs). PEER used the merged file to compile a list of kindergarten teachers, based on each child's teacher as specified in the demographic data. PEER also used the merged file to calculate three classroom-level values for each teacher: class size, percentage of students eligible for free or reduced-priced lunch, and percentage of students eligible for EL services.

PEER then requested teacher data from the district for the list of teachers compiled from the student data file. The teacher data included level of education (for example, master's degree, sixth year certificate, etc.), teacher certification endorsement area (for example, Elementary K-6, Bilingual PK-12, etc.), and years of teaching experience in the district.

PEER linked teacher and classroom level data with student data by using the name of each student's teacher (as specified in the demographic data) to assign values for the student's teacher and classroom. If the assigned teacher was missing from the demographic data, PEER used the assessing teacher name from the DIBELS data. (In Norwalk, the DIBELS are typically administered by the assigned classroom teacher.)

Although the DIBELS composite scores can be used to compare students to benchmarks, composite scores are difficult to compare across time points because the same scales are not administered at all time points (namely, BOY, MOY, and EOY). For this reason, PEER decided it was not appropriate to do a growth analysis of student scores across time points. Instead, we opted to analyze EOY DIBELS Next benchmark status and correct for BOY DIBELS Next benchmark status.

After linking the student and teacher data, PEER used HLM 7.2 software to conduct analyses using a multilevel modeling (MLM) approach. MLM is designed for handling nested data such as students grouped within classrooms and schools. Under such conditions, the nature of the data violates one of the assumptions required of traditional regression analyses-that each student's score on a measure is independent of other students. In this case, students' scores on a given measure may be partially dependent upon the classroom or school they attend. MLM allows for the proper statistical modeling of such dependencies.

For each MLM model, PEER researchers used the teacher ID as a grouping/cluster variable and end-of-year (EOY) DIBELS benchmark data as an outcome, which was coded as " 1 " for students who met the benchmark and "0" for students who did not meet the benchmark. Student demographics and beginning-of-year (BOY) DIBELS benchmark scores (coded the same as the EOY DIBELS data) were entered as level-1 variables, or student-level indicators. Specifically, the analyses included variables for English Learner (EL) status, special education status, free or reduced-price lunch (FRPL) status, gender, race/ethnicity, and BOY DIBELS benchmark status.

Teacher-level variables were entered as level-2 variables in the model. These variables consist of a continuous measure of teachers' number of years of experience, an ordinal measure of teachers' level of education (see codes and descriptions in Table B.2a of Appendix B), and a binary variable describing whether a teacher had at least one teacher
certification that included kindergarten. We used the endorsement codes listed for each teacher to determine his/her value for this binary variable. These codes are described Table B.4a, in Appendix B. All models were conducted separately for the 2014-2015 school year and the 2015-2016 school year.

We first conducted an unconditional model for each year to determine the intraclass correlation, which describes the proportion of variability in DIBELS scores among classrooms relative to the total variability in DIBELS scores, where total variability is the sum of within-classroom variability plus among-classroom variability. We did this for DIBELS benchmark status and DIBELS composite scores.

Second, we conducted a model with just the student-level demographic (level-1) variables and examined which of these factors were associated with end-of-year DIBELS benchmark status, controlling for beginning-of-year DIBELS benchmark status. See tables C.4a and C. 4 b in Appendix C for the results of these analyses.

Third, we added level- 2 variables to our analysis. Our third model included the addition of teacher-level variables to the second model, in order to examine the extent to which teacher factors were associated with end-of-year DIBELS benchmark status. Once again, we controlled for beginning-of-year DIBELS benchmark status. See tables C.5a and C.5b in Appendix C for the results of these analyses.

Our fourth model examined those student factors found to be associated with end-of-year DIBELS benchmark status, to explore whether teacher factors explained the relationship (slope) between the student factors and EOY DIBELS benchmark status. We model the slopes as fixed slopes to allow them to vary across classrooms. These were entered to examine random intercepts and not random slopes. See tables C .6 a and C .6 b in Appendix C for the results of these analyses.

Finally, we examined whether classroom-level factors contributed to students' DIBELS benchmark status at the end of the year. For this analysis, we created classroom-level variables representing the class size (number of students), the percentage of students eligible for free and reduced priced lunch, and the percentage of students with ELL status. These variables were entered as level-2 variables and students' DIBELS composite scores at the beginning of the year were entered as a level- 1 variable in a random-intercepts model. This type of model accounts for the variation in these measures across classrooms while controlling for their status at the beginning of the year. See tables C .7 a and C .7 b in Appendix C for the results of these analyses. We also conducted a separate set of analyses where individual-level student demographics were added as control variables to the previous model. Specifically, we entered Black, Hispanic, and Asian dummy variables, ELL status, and free and reduced lunch dummy variables. See tables C.8a and C.8b in Appendix C for the results of these analyses. As with the prior analyses, separate models were conducted for the 20142015 year and the 2015-2016 school year.

## Appendix B: Study Sample

Table B.1a: Study sample by English Learner status

|  | 2014-2015 |  | 2015-2016 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Frequency | Percent | Frequency | Percent |
| No | 572 | 76.2 | 601 | 77.4 |
| Yes | 179 | 23.8 | 175 | 22.6 |
| Total | 751 | 100.0 | 776 | 100.0 |

Table B.1b: Study sample by Special Education status

|  | 2014-2015 |  | 2015-2016 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Frequency | Percent | Frequency | Percent |
| No | 684 | 91.1 | 687 | 88.5 |
| Yes | 67 | 8.9 | 89 | 11.5 |
| Total | 751 | 100.0 | 776 | 100.0 |

Table B.1c: Study sample by Free or Reduced-Price Lunch eligibility

|  | 2014-2015 |  | 2015-2016 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Frequency | Percent | Frequency | Percent |
| Not eligible | 381 | 50.7 | 396 | 51.0 |
| Eligible for <br> reduced <br> price lunch | 54 | 7.2 | 55 | 7.1 |
| Eligible for <br> free lunch | 316 | 42.1 | 325 | 41.9 |
| Total | 751 | 100.0 | 776 | 100.0 |

Table B.1d: Study sample by gender

|  | 2014-2015 |  | 2015-2016 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Frequency | Percent | Frequency | Percent |
| Male | 395 | 52.6 | 406 | 52.3 |
| Female | 356 | 47.4 | 370 | 47.7 |
| Total | 751 | 100.0 | 776 | 100.0 |

Table B.1e: Study sample by race/ethnicity

|  | 2014-2015 |  | 2015-2016 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Frequency | Percent | Frequency | Percent |
| Hispanic | 351 | 46.7 | 329 | 42.4 |
| White | 258 | 34.4 | 275 | 35.4 |
| Black | 95 | 12.6 | 121 | 15.6 |
| Asian | 47 | 6.3 | 51 | 6.6 |
| Total | 751 | 100.0 | 776 | 100.0 |

Table B.2a: Level of education codes for kindergarten teachers

| Level of <br> Education <br> code | Alternate Level <br> of Education <br> code | Description | Other info |
| :--- | :--- | :--- | :--- |
| BA |  | Bachelor's degree only (none present in this data set) |  |
| BA +15 |  | Bachelor's degree plus 15 additional credit hours <br> (none present in this data set) |  |
| MA | Master's degree | Also referred to as BA +30 <br> in NPS teacher contract |  |
| MA +15 | MA15 | Master's degree plus 15 additional credit hours |  |
| 6 YR | 6th Year | Advanced certificate/diploma beyond master's <br> degree (specific to education field) | Also referred to as BA +60 <br> in NPS Teacher contract |
| 6Y15 | 6th Year +15 | Sixth Year certificate plus 15 additional credit hours |  |
| 7 YR | 7th Year | Seems to mean Sixth Year certificate plus 30 <br> additional credit hours | Also referred to as BA +90 <br> in NPS Teacher contract |

Table B.2b: Frequencies for kindergarten teacher level of education codes

|  | 2014-2015 |  |  |  | 2015-2016 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Frequency | Percent | Valid Percent | Cumulative Percent | Frequency | Percent | Valid <br> Percent | Cumulative Percent |
| MA | 4 | 8.7 | 9.1 | 9.1 | 7 | 15.2 | 15.6 | 15.6 |
| MA +15 | 4 | 8.7 | 9.1 | 18.2 | 3 | 6.5 | 6.7 | 22.2 |
| 6th Year | 0 | 0.0 | 0.0 | 18.2 | 0 | 0.0 | 0.0 | 22.2 |
| 6th Year +15 | 3 | 6.5 | 6.8 | 25.0 | 3 | 6.5 | 6.7 | 28.9 |
| 7th Year | 33 | 71.7 | 75.0 | 100.0 | 32 | 69.6 | 71.1 | 100.0 |
| Subtotal | 44 | 95.7 | 100.0 |  | 45 | 97.8 | 100.0 |  |
| Missing | 2 | 4.3 |  |  | 1 | 2.2 |  |  |
| Total | 46 | 100.0 |  |  | 46 | 100.0 |  |  |

Table B.3: Frequencies for teacher years of experience

|  | Frequency | Percent | Valid <br> Percent | Cumulative <br> Percent | Frequency |  | Percent <br> Valid <br> Percent | Cumulative <br> Percent |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 to 5 years | 8 | 17.4 | 18.2 | 18.2 | 11 | 23.9 | 24.4 | 24.4 |
| 6 to 10 years | 5 | 10.9 | 11.4 | 29.5 | 7 | 15.2 | 15.6 | 40.0 |
| 11 to 15 years | 17 | 37.0 | 38.6 | 68.2 | 15 | 32.6 | 33.3 | 73.3 |
| $16+$ years | 14 | 30.4 | 31.8 | 100.0 | 12 | 26.1 | 26.7 | 100.0 |
| Subtotal | 44 | 95.7 | 100.0 |  | 45 | 97.8 | 100.0 |  |
| Missing | 2 | 4.3 |  |  | 1 | 2.2 |  |  |
| Total | 46 | 100.0 |  | 46 | 100.0 |  |  |  |

Table B.4a. Endorsement codes for teacher certification

| ENDORSEMENT CODE | DESCRIPTION | Includes Kindergarten Endorsement |
| :---: | :---: | :---: |
| 001 | Pre-K-Grade 8 | Yes |
| 002 | Pre-K-Grade 6 | Yes |
| 003 | Pre-K-Grade 3 | Yes |
| 004 | Grades 1-8 | No |
| 005 | Elementary Education, 1-6 | No |
| 006 | Middle Grades, 4-8 | No |
| 008 | Pre-K and Kindergarten | Yes |
| 009 | Bilingual, PK-12 | Yes |
| 013 | Elementary, K-6 | Yes |
| 065 | Comprehensive Special Education, PK-12 | Yes |
| 102 | Remedial Reading and Remedial Language Arts, 1-12 | No |
| 111 | Teaching English to Speakers of Other Languages (TESOL), PK-12 | Yes |
| 113 | Integrated Early Childhood/Special Ed., Nursery-K-Elem., 1-3 | Yes |

Table B.4b: Frequencies for teacher certification endorsement area

|  | Frequency | Percent2014-2015 <br> Valid <br> Percent | Cumulative <br> Percent | Frequency | Percent | Valid <br> Percent | Cumulative <br> Percent |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kindergarten <br> Endorsed | 37 | 80.4 | 84.1 | 84.1 | 39 | 84.8 | 86.7 | 86.7 |
| No <br> Kindergarten <br> endorsement | 7 | 15.2 | 15.9 | 100.0 | 6 | 13.0 | 13.3 | 100.0 |
| Subtotal | 44 | 95.7 | 100.0 |  | 45 | 97.8 | 100.0 |  |
| Missing | 2 | 4.3 |  |  | 1 | 2.2 |  |  |
| Total | 46 | 100.0 |  |  | 46 | 100.0 |  |  |

## Appendix C: Supplemental Tables

Table C.1: Descriptive statistics for beginning-of-year and end-of-year DIBELS composite scores

|  | N | Min | Max | Mean | Std. Dev. | N | Min | 2015-2016 <br> Max | Mean | Std. Dev. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beginning <br> of Year | 751 | 0 | 122 | 34.04 | 24.75 | 776 | 0 | 118 | 35.66 | 24.14 |
| End of <br> Year | 751 | 1 | 329 | 148.54 | 43.59 | 776 | 3 | 332 | 150.01 | 43.37 |

Table C.2: Frequencies for beginning-of-year and end-of-year DIBELS benchmark scores

|  |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  | 2014-2015 |  | 2015-2016 |  |
| Frequency <br> Beginning <br> of Year | Not Met | 311 | 41.4 | 294 | 37.9 |
|  | Met | 440 | 58.6 | 482 | 62.1 |
|  | Total | 751 | 100.0 | 776 | 100.0 |
| End of <br> Year | Not Met | 131 | 17.4 | 140 | 18.0 |
|  | Met | 620 | 82.6 | 636 | 82.0 |
|  | Total | 751 | 100.0 | 776 | 100.0 |

Table C.3: Descriptive statistics for teacher years of experience

|  | N | Minimum | Maximum | Mean | Std. <br> Deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2014-2015$ | 44 | 0 | 33 | 12.9 | 7.1 |
| $2015-2016$ | 45 | 1 | 34 | 12.2 | 7.9 |

Table C.4a: Multilevel model examining student effects on DIBELS benchmark status for 2014-2015

| Fixed Effect | Coefficient | Standard <br> Error | $t$-ratio | Approx. <br> d.f. | $p$-value | Odds <br> Ratio | Confidence <br> Interval |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Student-level effects |  |  |  |  |  |  |  |
| Intercept | 1.689464 | 0.351668 | 4.804 | 43 | $<0.001$ | 5.416578 | $(2.665,11.010)$ |
| EL Status | -0.734809 | 0.318303 | -2.309 | 721 | 0.021 | 0.479597 | $(0.257,0.896)$ |
| Special Education Status | -1.710911 | 0.352636 | -4.852 | 721 | $<0.001$ | 0.180701 | $(0.090,0.361)$ |
| Free lunch eligibility | -0.437893 | 0.250074 | -1.751 | 721 | 0.08 | 0.645395 | $(0.395,1.055)$ |
| Reduced-price lunch | 0.810613 | 0.647812 | 1.251 | 721 | 0.211 | 2.249286 | $(0.630,8.028)$ |
| eligibility | 0.330089 | 0.268069 | 1.231 | 721 | 0.219 | 1.391092 | $(0.822,2.355)$ |
| Gender | -0.479197 | 0.34525 | -1.388 | 721 | 0.166 | 0.619281 | $(0.314,1.220)$ |
| Hispanic/Latino | -0.735229 | 0.490848 | -1.498 | 721 | 0.135 | 0.479395 | $(0.183,1.257)$ |
| African American/Black | 0.154656 | 0.660381 | 0.234 | 721 | 0.815 | 1.167256 | $(0.319,4.270)$ |
| Asian | 2.372109 | 0.272064 | 8.719 | 721 | $<0.001$ | 10.71998 | $(6.283,18.292)$ |
| BOY DIBELS Benchmark |  |  |  |  |  |  |  |
| Status |  |  |  |  |  |  |  |

Note: Student effects are examined using a random intercept model with fixed effects.

Partuentip for Earty Edcation Recearch

Table C.4b: Multilevel model examining student effects on DIBELS benchmark status for 2015-2016

| Fixed Effect | Coefficient | Standard <br> Error | $\boldsymbol{t}$-ratio | Approx. <br> d.f. | $p$-value | Odds <br> Ratio | Confidence <br> Interval |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Student-Level Effects |  |  |  |  |  |  |  |
| Intercept | 3.828939 | 0.352778 | 10.854 | 43 | $<0.001$ | 46.01368 | $(22.587,93.737)$ |
| EL Status | -0.403428 | 0.22662 | -1.78 | 750 | 0.075 | 0.668026 | $(0.428,1.043)$ |
| Special Education Status | -1.924613 | 0.388186 | -4.958 | 750 | $<0.001$ | 0.145932 | $(0.068,0.313)$ |
| Free lunch eligibility | -1.06592 | 0.231114 | -4.612 | 750 | $<0.001$ | 0.344411 | $(0.219,0.542)$ |
| Reduced-price lunch <br> eligibility | -0.131582 | 0.500221 | -0.263 | 750 | 0.793 | 0.876707 | $(0.328,2.342)$ |
| Hispanic/Latino | -0.680031 | 0.36055 | -1.886 | 750 | 0.06 | 0.506601 | $(0.250,1.028)$ |
| African American/Black | -0.485065 | 0.439679 | -1.103 | 750 | 0.27 | 0.615657 | $(0.260,1.460)$ |
| Asian | -0.970726 | 0.588751 | -1.649 | 750 | 0.1 | 0.378808 | $(0.119,1.204)$ |
| BOY DIBELS Benchmark <br> Status | 3.110821 | 0.344575 | 9.028 | 750 | $<0.001$ | 22.43945 | $(11.405,44.149)$ |

Note: Student effects are examined using a random intercept model with fixed effects.
Table C.5a: Multilevel model examining teacher and student effects on DIBELS benchmark status for 2014-2015

| Fixed Effect | Coefficient | Standard <br> Error | $t$-ratio | Approx. <br> d.f. | $p$-value | Odds <br> Ratio | Confidence <br> Interval |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Teacher-Level Effects |  |  |  |  |  |  |  |
| Intercept | 1.893645 | 0.848954 | 2.231 | 40 | 0.031 | 6.643538 | $(1.194,36.975)$ |
| Teacher Years of Experience | -0.012059 | 0.032534 | -0.371 | 40 | 0.713 | 0.988013 | $(0.925,1.055)$ |
| Teacher Education Level | 0.096177 | 0.128257 | 0.75 | 40 | 0.458 | 1.100954 | $(0.849,1.427)$ |
| Teacher kindergarten <br> endorsement status | -0.661854 | 0.553051 | -1.197 | 40 | 0.238 | 0.515894 | $(0.169,1.578)$ |
| Student-Level Effects |  |  |  |  |  |  |  |
| EL Status | -0.636812 | 0.321521 | -1.981 | 43 | 0.054 | 0.528976 | $(0.277,1.012)$ |
| Special Education Status | -1.763022 | 0.352571 | -5 | 678 | $<0.001$ | 0.171526 | $(0.086,0.343)$ |
| Free lunch eligibility | -0.407062 | 0.265649 | -1.532 | 678 | 0.126 | 0.665603 | $(0.395,1.122)$ |
| Reduced-price lunch <br> eligibility | 0.772721 | 0.638793 | 1.21 | 678 | 0.227 | 2.16565 | $(0.618,7.594)$ |
| Gender | 0.366395 | 0.275397 | 1.33 | 678 | 0.184 | 1.442524 | $(0.840,2.478)$ |
| Hispanic/Latino | -0.460718 | 0.355506 | -1.296 | 678 | 0.195 | 0.630831 | $(0.314,1.268)$ |
| African American/Black | -0.690554 | 0.507873 | -1.36 | 678 | 0.174 | 0.501298 | $(0.185,1.359)$ |
| Asian | 0.12791 | 0.645252 | 0.198 | 678 | 0.843 | 1.136451 | $(0.320,4.036)$ |
| BOY DIBELS Benchmark | 2.443018 | 0.269441 | 9.067 | 678 | $<0.001$ | 11.50772 | $(6.779,19.535)$ |
| Status |  |  |  |  |  |  |  |
| R |  |  |  |  |  |  |  |

Note: Teacher and student effects are examined using a random intercept model with fixed effects

Table C.5b: Multilevel model examining teacher and student effects on DIBELS benchmark status for 2015-2016

| Fixed Effect | Coefficient | Standard <br> Error | t-ratio | Approx. <br> d.f. | $p$ - <br> value | Odds <br> Ratio | Confidence <br> Interval |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Teacher-Level Effects |  |  |  |  |  |  |  |
| Intercept | 2.20696 | 0.795852 | 2.773 | 40 | 0.008 | 9.088049 | $(1.818,45.430)$ |
| Teacher Years of Experience | 0.028107 | 0.025419 | 1.106 | 40 | 0.275 | 1.028506 | $(0.977,1.083)$ |
| Teacher Education Level | 0.033313 | 0.123684 | 0.269 | 40 | 0.789 | 1.033874 | $(0.805,1.328)$ |
| Teacher certification | -1.139875 | 0.388298 | -2.936 | 40 | 0.005 | 0.319859 | $(0.146,0.701)$ |
| Student-Level Effects |  |  |  |  |  |  |  |
| EL Status | -0.371484 | 0.229092 | -1.622 | 749 | 0.105 | 0.68971 | $(0.440,1.082)$ |
| Special Education Status | -1.976082 | 0.396418 | -4.985 | 749 | $<0.001$ | 0.138611 | $(0.064,0.302)$ |
| Free lunch eligibility | -1.118921 | 0.227431 | -4.92 | 749 | $<0.001$ | 0.326632 | $(0.209,0.511)$ |
| Reduced-price lunch | -0.070869 | 0.496101 | -0.143 | 749 | 0.886 | 0.931584 | $(0.352,2.468)$ |
| eligibility |  |  |  |  |  |  |  |
| Gender | 0.571673 | 0.347391 | 1.646 | 749 | 0.1 | 1.771228 | $(0.895,3.504)$ |
| Hispanic/Latino | -0.642047 | 0.366857 | -1.75 | 749 | 0.081 | 0.526214 | $(0.256,1.082)$ |
| African American/Black | -0.520908 | 0.437494 | -1.191 | 749 | 0.234 | 0.593981 | $(0.252,1.403)$ |
| Asian | -1.146133 | 0.580693 | -1.974 | 749 | 0.049 | 0.317864 | $(0.102,0.994)$ |
| BOY DIBELS Benchmark | 3.23581 | 0.364916 | 8.867 | 749 | $<0.001$ | 25.42697 | $(12.418,52.066)$ |
| Status |  |  |  |  |  |  |  |

Note: Teacher and student effects are examined using a random intercept model with fixed effects
Table C.6a: Multilevel model examining teacher factors associated with student effects on DIBELS benchmark status for 2014-2015

| Fixed Effect | Coefficient | Standard <br> Error | $t$-ratio | Approx. | $p$ - <br> d.f. | Odds <br> value | Confidence <br> Ratio | Interval |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Teacher-Level Effects

| Intercept | 1.885107 | 0.976298 | 1.931 | 40 | 0.061 | 6.587056 | $(0.915,47.427)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Teacher Years of Experience | -0.027877 | 0.036377 | -0.766 | 40 | 0.448 | 0.972508 | $(0.904,1.047)$ |
| Teacher Education Level | 0.180911 | 0.141937 | 1.275 | 40 | 0.21 | 1.198309 | $(0.899,1.597)$ |
| Teacher kindergarten <br> endorsement status | -0.692315 | 0.640824 | -1.08 | 40 | 0.286 | 0.500416 | $(0.137,1.828)$ |

Teacher-level factors predicting EL effect

| Intercept | 0.700359 | 1.381638 | 0.507 | 715 | 0.612 | 2.014476 | $(0.134,30.383)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Teacher Years of Experience | 0.055095 | 0.029469 | 1.87 | 715 | 0.062 | 1.056641 | $(0.997,1.120)$ |
| Teacher Education Level | -0.396814 | 0.306701 | -1.294 | 715 | 0.196 | 0.672459 | $(0.368,1.228)$ |
| Teacher kindergarten <br> endorsement status | -0.528691 | 0.533569 | -0.991 | 715 | 0.322 | 0.589376 | $(0.207,1.681)$ |

Teacher-Level factors predicting Special Education effect

| Intercept | -1.735439 | 1.280014 | -1.356 | 715 | 0.176 | 0.176323 | $(0.014,2.178)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Teacher Years of Experience | 0.056284 | 0.062875 | 0.895 | 715 | 0.371 | 1.057898 | $(0.935,1.197)$ |
| Teacher Education Level | -0.292673 | 0.198107 | -1.477 | 715 | 0.14 | 0.746266 | $(0.506,1.101)$ |
| Teacher kindergarten <br> endorsement status | 0.540107 | 0.841428 | 0.642 | 715 | 0.521 | 1.71619 | $(0.329,8.959)$ |

## Student-Level Effects

 $\begin{array}{llllllll}\text { Free lunch eligibility } & -0.369965 & 0.270276 & -1.369 & 715 & 0.171 & 0.690758 & (0.406,1.175)\end{array}$| Reduced-price lunch eligibility | 0.782921 | 0.659909 | 1.186 | 715 | 0.236 | 2.187854 | $(0.599,7.996)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender | 0.33506 | 0.27455 | 1.22 | 715 | 0.223 | 1.398024 | $(0.815,2.397)$ |
| Hispanic/Latino | -0.52409 | 0.373839 | -1.402 | 715 | 0.161 | 0.592094 | $(0.284,1.234)$ |
| African American/Black | -0.748685 | 0.509084 | -1.471 | 715 | 0.142 | 0.472988 | $(0.174,1.286)$ |
| Asian | 0.218599 | 0.738462 | 0.296 | 715 | 0.767 | 1.244332 | $(0.292,5.307)$ |
| BOY DIBELS Benchmark Status | 2.460741 | 0.279067 | 8.818 | 715 | $<0.001$ | 11.71349 | $(6.771,20.264)$ |

Note: Student and teacher effects are examined using a random intercept model with fixed effects.

Table C.6b: Multilevel model examining teacher factors associated with student effects on DIBELS benchmark status for 2015-2016

| Fixed Effect | Coefficient | Standard <br> Error | $\boldsymbol{t}$-ratio | Approx. <br> d.f. | $\boldsymbol{p}$ - <br> value | Odds <br> Ratio | Confidence <br> Interval |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Teacher-Level Effects |  |  |  |  |  |  |  |
| Intercept | 1.851574 | 1.027175 | 1.803 | 40 | 0.079 | 6.369839 | $(0.798,50.832)$ |
| Teacher Years of <br> Experience | 0.004133 | 0.02612 | 0.158 | 40 | 0.875 | 1.004142 | $(0.952,1.059)$ |
| Teacher Education Level | 0.134191 | 0.167943 | 0.799 | 40 | 0.429 | 1.143612 | $(0.814,1.606)$ |
| Teacher kindergarten <br> endorsement status | -0.939718 | 0.40019 | -2.348 | 40 | 0.024 | 0.390738 | $(0.174,0.878)$ |
| Teacher-level factors predicting special education effect |  |  |  |  |  |  |  |
| Intercept | -2.544781 | 1.200171 | -2.12 | 718 | 0.034 | 0.07849 | $(0.007,0.829)$ |
| Teacher Years of <br> Experience | -0.012874 | 0.037596 | -0.342 | 718 | 0.732 | 0.987209 | $(0.917,1.063)$ |
| Teacher Education Level | -0.082265 | 0.210998 | -0.39 | 718 | 0.697 | 0.921028 | $(0.609,1.394)$ |
| Teacher kindergarten <br> endorsement status | 1.159822 | 0.655582 | 1.769 | 718 | 0.077 | 3.189364 | $(0.880,11.558)$ |

Teacher-Level factors predicting free-lunch effect

| Intercept | -0.385278 | 1.072904 | -0.359 | 718 | 0.72 | 0.680262 | $(0.083,5.595)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Teacher Years of <br> Experience | 0.036397 | 0.038721 | 0.94 | 718 | 0.348 | 1.037068 | $(0.961,1.119)$ |
| Teacher Education Level | -0.137612 | 0.223495 | -0.616 | 718 | 0.538 | 0.871437 | $(0.562,1.352)$ |
| Teacher kindergarten <br> endorsement status | -0.732446 | 0.467046 | -1.568 | 718 | 0.117 | 0.480732 | $(0.192,1.203)$ |


| Student-Level Effects |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Reduced-price lunch <br> eligibility | -0.230646 | 0.461675 | -0.5 | 718 | 0.618 | 0.794021 | $(0.321,1.966)$ |
| Gender | 0.597309 | 0.347159 | 1.721 | 718 | 0.086 | 1.817223 | $(0.919,3.594)$ |
| Hispanic/Latino | -0.752889 | 0.375395 | -2.006 | 718 | 0.045 | 0.471004 | $(0.225,0.985)$ |
| African American/Black | -0.465049 | 0.4596 | -1.012 | 718 | 0.312 | 0.628104 | $(0.255,1.549)$ |
| Asian | -1.361019 | 0.54943 | -2.477 | 718 | 0.013 | 0.256399 | $(0.087,0.754)$ |
| BOY DIBELS Benchmark | 3.321518 | 0.367906 | 9.028 | 718 | $<0.001$ | 27.70237 | $(13.450,57.059)$ |
| Status |  |  |  |  |  |  |  |

Note: Student and teacher effects are examined using a random intercept model with fixed effects.

Table C.7a: Multilevel model examining classroom effects on DIBELS benchmark status for 2014-2015, not controlling for demographic variables

| Fixed Effect | Coefficient | Standard <br> Error | $t$-ratio | Approx. <br> d.f. | $\boldsymbol{p}$-value | Odds <br> Ratio | Confidence <br> Interval |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Classroom-Level Effects |  |  |  |  |  |  |  |
| Intercept | -0.465934 | 2.152062 | -0.217 | 38 | 0.83 | 0.627549 | $(0.008,49.008)$ |
| Class size | 0.028892 | 0.088011 | 0.328 | 38 | 0.745 | 1.029313 | $(0.861,1.230)$ |
| Percentage of class with <br> Special Education status | -0.005503 | 0.027586 | -0.2 | 38 | 0.843 | 0.994512 | $(0.940,1.052)$ |
| Percentage of class eligible <br> for reduced-price lunch | 0.015787 | 0.018458 | 0.855 | 38 | 0.398 | 1.015912 | $(0.979,1.055)$ |
| Percentage of class eligible <br> for free lunch | 0.018242 | 0.030157 | 0.605 | 38 | 0.549 | 1.018409 | $(0.958,1.083)$ |
| Percentage of class with EL <br> Status | -0.011707 | 0.013571 | -0.863 | 38 | 0.394 | 0.988361 | $(0.962,1.016)$ |
| Student-Level Effects |  |  |  |  |  |  |  |
| BOY DIBELS Benchmark <br> status | 2.6318 | 0.217395 | 12.106 | 809 | $<0.001$ | 13.89876 | $(9.071,21.297)$ |

Note: Classroom and student effects are examined using a random intercept model with fixed effects.

Table C.7b: Multilevel model examining classroom effects on DIBELS benchmark status for 2015-2016, not controlling for demographic variables

| Fixed Effect | Coefficient | Standard <br> Error | $\boldsymbol{t}$-ratio | Approx. <br> d.f. | $p$-value | Odds <br> Ratio | Confidence <br> Interval |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Classroom-Level Effects |  |  |  |  |  |  |  |
| Intercept | 3.403261 | 0.876704 | 3.882 | 38 | $<0.001$ | 30.06198 | $(5.093,177.432)$ |
| Class size | -0.0533 | 0.047238 | -1.128 | 38 | 0.266 | 0.948095 | $(0.862,1.043)$ |
| Percentage of class with <br> Special Education status | 0.018655 | 0.027062 | 0.689 | 38 | 0.495 | 1.01883 | $(0.964,1.076)$ |
| Percentage of class eligible <br> for reduced-price lunch | -0.00897 | 0.022982 | -0.39 | 38 | 0.698 | 0.99107 | $(0.946,1.038)$ |
| Percentage of class eligible <br> for free lunch | 0.010012 | 0.014214 | 0.704 | 38 | 0.486 | 1.010062 | $(0.981,1.040)$ |
| Percentage of class with EL <br> Status | -0.022728 | 0.011787 | -1.928 | 38 | 0.061 | 0.977529 | $(0.954,1.001)$ |
| Student-Level Effects |  |  |  |  |  |  |  |
| BOY DIBELS Benchmark <br> status | 3.204618 | 0.280113 | 11.44 | 804 | $<0.001$ | 24.64608 | $(14.222,42.712)$ |

Note: Classroom and student effects are examined using a random intercept model with fixed effects.

Table C.8a: Multilevel model examining classroom effects on DIBELS benchmark status for 2014-2015, controlling for demographic variables

| Fixed Effect | Coefficient | Standard <br> Error | $\boldsymbol{t}$-ratio | Approx. <br> d.f. | $p$-value | Odds <br> Ratio | Confidence <br> Interval |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Classroom-Level Effects |  |  |  |  |  |  |  |
| Intercept | -1.53342 | 2.70511 | -0.567 | 38 | 0.574 | 0.215796 | $(0.001,51.647)$ |
| Class size | 0.077968 | 0.107641 | 0.724 | 38 | 0.473 | 1.081088 | $(0.869,1.344)$ |
| Percentage of class with <br> Special Education Status | 0.033677 | 0.034013 | 0.99 | 38 | 0.328 | 1.03425 | $(0.965,1.108)$ |
| Percentage of class eligible <br> for reduced-price lunch | 0.03151 | 0.021326 | 1.478 | 38 | 0.148 | 1.032012 | $(0.988,1.078)$ |
| Percentage of class eligible <br> for free lunch | 0.022019 | 0.036785 | 0.599 | 38 | 0.553 | 1.022263 | $(0.949,1.101)$ |
| Percentage of class with EL <br> Status | -0.00566 | 0.015333 | -0.369 | 38 | 0.714 | 0.994356 | $(0.964,1.026)$ |
| Student Level Effects |  |  |  |  |  |  |  |
| EL Status | -0.777769 | 0.319056 | -2.438 | 721 | 0.015 | 0.45943 | $(0.246,0.860)$ |
| Special Education Status | -1.766717 | 0.366361 | -4.822 | 721 | $<0.001$ | 0.170893 | $(0.083,0.351)$ |
| Free lunch eligibility | -0.496121 | 0.254317 | -1.951 | 721 | 0.051 | 0.608888 | $(0.370,1.003)$ |
| Reduced-price lunch <br> eligibility | 0.740263 | 0.616735 | 1.2 | 721 | 0.23 | 2.096487 | $(0.624,7.039)$ |
| Gender | 0.330376 | 0.281226 | 1.175 | 721 | 0.24 | 1.391491 | $(0.801,2.417)$ |
| Hispanic/Latino | -0.501395 | 0.358331 | -1.399 | 721 | 0.162 | 0.605685 | $(0.300,1.224)$ |
| African-American/Black | -0.749898 | 0.503389 | -1.49 | 721 | 0.137 | 0.472415 | $(0.176,1.270)$ |
| Asian | 0.09993 | 0.660324 | 0.151 | 721 | 0.88 | 1.105093 | $(0.302,4.042)$ |
| BOY DIBELS Benchmark | 2.410324 | 0.282653 | 8.527 | 721 | $<0.001$ | 11.13757 | $(6.393,19.404)$ |
| status |  |  |  |  |  |  |  |

Note: Classroom and student effects are examined using a random intercept model with fixed effects.

Table C.8b: Multilevel model examining classroom effects on DIBELS benchmark status for 2015-2016, controlling for demographic variables

| Fixed Effect | Coefficient | Standard Error | $t$-ratio | Approx. d.f. | $p$-value | Odds <br> Ratio | Confidence Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Classroom-level effects |  |  |  |  |  |  |  |
| Intercept | 4.400916 | 1.187013 | 3.708 | 38 | <0.001 | 81.52554 | (7.369,902.002) |
| Class size | -0.077316 | 0.068281 | -1.132 | 38 | 0.265 | 0.925598 | (0.806,1.063) |
| Percentage of class with Special Education Status | 0.049136 | 0.033381 | 1.472 | 38 | 0.149 | 1.050363 | (0.982,1.124) |
| Percentage of class eligible for reduced-price lunch | -0.006919 | 0.027911 | -0.248 | 38 | 0.806 | 0.993105 | (0.939,1.051) |
| Percentage of class eligible for free lunch | 0.024227 | 0.017356 | 1.396 | 38 | 0.171 | 1.024523 | (0.989,1.061) |
| Percentage of class with EL Status | -0.014834 | 0.014385 | -1.031 | 38 | 0.309 | 0.985276 | (0.957,1.014) |
| Student-level effects |  |  |  |  |  |  |  |
| EL Status | -0.371873 | 0.234094 | -1.589 | 750 | 0.113 | 0.689442 | (0.435,1.092) |
| Special Education Status | -2.057869 | 0.381205 | -5.398 | 750 | <0.001 | 0.127726 | (0.060,0.270) |
| Free lunch eligibility | -1.171028 | 0.247667 | -4.728 | 750 | <0.001 | 0.310048 | (0.191,0.504) |
| Reduced-price lunch eligibility | -0.19495 | 0.522888 | -0.373 | 750 | 0.709 | 0.822876 | (0.295,2.298) |
| Hispanic/Latino | -0.66063 | 0.369666 | -1.787 | 750 | 0.074 | 0.516526 | (0.250,1.068) |
| African-American/Black | -0.48036 | 0.450987 | -1.065 | 750 | 0.287 | 0.618561 | (0.255,1.500) |
| Asian | -0.999452 | 0.606596 | -1.648 | 750 | 0.1 | 0.368081 | (0.112,1.212) |
| BOY DIBELS Benchmark status | 3.168207 | 0.343857 | 9.214 | 750 | <0.001 | 23.76485 | (12.096,46.691) |

Note: Classroom and student effects are examined using a random intercept model with fixed effects.

Table C.9a: Descriptive statistics for teacher years of experience in 2014-2015 for teachers with and without kindergarten endorsement

| Teacher Endorsement Status | N | Minimum | Maximum | Mean | Std. <br> Deviation |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Teachers with kindergarten endorsement | 37 | 0 | 33 | 12.78 | 7.63 |
| Teachers without kindergarten endorsement | 7 | 12 | 20 | 13.57 | 2.94 |

Table C.9b: Descriptive statistics for teacher years of experience in 2015-2016 for teachers with and without kindergarten endorsement

| Teacher Endorsement Status | $\mathbf{N}$ | Minimum | Maximum | Mean <br> Std. <br> Deviation |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Teachers with kindergarten endorsement | 39 | 1 | 34 | 11.79 | 8.33 |
| Teachers without kindergarten endorsement | 6 | 13 | 21 | 14.67 | 3.20 |

## Appendix D: Understanding the Evolution of a Young Research-Practice Partnership

PEER was launched in 2014 with a grant from the Institute of Education Sciences. PEER's grant application proposed three original research projects; this brief describes the third of these projects. PEER's knowledge about available data has evolved considerably over the first years since its launch, and this project has evolved as a result.

For example, this project was originally intended to examine data from the 2010-2011 to 2013-2014 school years from all three PEER communities. The questions PEER proposed in 2014 for this project were:

1. How do the teacher factors such as level of education, preschool certification, number of years of teaching at the current level, and number of total years of teaching predict preschool and kindergarten performance?
2. How do school factors such as school or center-based status, class size, length of day, teacher-child ratio, and SES predict preschool and kindergarten performance?

PEER soon learned that in Connecticut in that era, students generally did not receive a state-assigned student identifier until they enrolled in a school district. For children that attend community-based preschools, that meant it was extremely difficult, if not impossible, to follow children from preschool into kindergarten.

As a result, PEER proposed that it would examine child performance across the preschool years, using the Connecticut Preschool Assessment Framework (CT-PAF), which all preschool programs were required to use at the time. PEER soon learned from the Office of Early Childhood (OEC) that the CT-PAF is intended only to inform instruction at the individual and classroom level. The OEC indicated that it would be inappropriate to use the CT-PAF to examine the growth of children over time.

In response, PEER proposed examining child performance across the kindergarten year, using the Developmental Reading Assessment, Second Edition (DRA-2) which districts were required to administer between 2009-10 and 20132014. Upon speaking with district partners, PEER soon learned that the DRA-2 had been conducted in a pencil and paper format. All three districts reported that student level data from this assessment were not available in a usable, electronic format.

When the state phased out the DRA-2 requirement in 2013-2014, districts were left to select their own assessments, such that there was no common kindergarten assessment across PEER communities. However, Norwalk Public Schools had already begun to introduce a new assessment for use in grades K-3 as part of the Connecticut K-3 Literacy Initiative (CK3LI): the Dynamic Indicators of Basic Early Literacy Next (DIBELS Next). Because Norwalk administers the DIBELS Next through the mCLASS online platform, the assessment data is available in electronic format. For this reason, PEER decided to focus its study on kindergarten classes in Norwalk. In 2016, the revised research questions for this project were:

1. How do the teacher factors such as level of education, certification, number of years of teaching at the kindergarten level, and number of total years of teaching predict kindergarten performance in literacy?
2. How do school factors such as class size, teacher-child ratio, and socioeconomic status predict kindergarten performance in literacy?

The first research question identifies four teacher-level variables: level of education, teacher certification endorsement area, number of years of teaching at the kindergarten level, and number of total years teaching. As PEER worked with the district to execute a data-sharing agreement and attain the requested data, it became clear that personnel records included only the number of years teaching in the district. Because it was not possible for the district to provide data for number of years at the kindergarten level specifically or number of years teaching in any district, we agreed to focus on the years of teaching experience in the district.

The second question identifies three classroom-level variables: class size, teacher-child ratio, and socioeconomic status. The district provided teacher name and FRPL status for each child, which allows for the calculation of class size and classroom-level FRPL eligibility, in terms of the percentage of students in the class who are eligible for free- or reducedprice lunch (FRPL). In terms of teacher-child ratios, the district advised us that because all kindergarten classrooms
typically have one teacher and one paraprofessional. Because this meant that teacher-child ratios would be proportional to class size, we decided that it would not add value to focus on teacher-child ratios.

Finally, PEER decided that it was critical to examine student characteristics in tandem with teacher-level variables and classroom level variables. Specifically, we thought it was important to examine the association of English learner status, special education status, free or reduced-price lunch status, gender, and race/ethnicity with kindergarten performance in literacy. As a result, the final research questions in 2017 were:

1. How do student factors such as English learner status, special education status, free or reduced-price lunch status, gender, and race/ethnicity predict kindergarten performance in literacy?
2. How do the teacher factors such as level of education, teacher certification endorsement area, and years of teaching experience in the district predict kindergarten performance in literacy?
3. How do school factors such as class size, percentage of students eligible for free or reduce-price lunch, and percentage of English learner students predict kindergarten performance in literacy?
