2020
Chapter Three Cell membrane mechanics and mechanosensory transduction
Martinac B, Nikolaev Y, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac A, Rohde P, Bavi O, Cox C. Chapter Three Cell membrane mechanics and mechanosensory transduction. Current Topics In Membranes 2020, 86: 83-141. PMID: 33837699, DOI: 10.1016/bs.ctm.2020.08.002.Peer-Reviewed Original ResearchConceptsCell mechanicsCell membrane mechanicsMechanosensitive ion channelsGene expressionIntracellular signalsMechanosensory transductionMolecular transducersIon channelsMechanical stimuliMembrane mechanicsCurrent knowledgeMechanical forcesMillisecond timescaleStimuli actCellsTransductionRapid progressNew toolMechanobiologyBiological cellsBetter understandingPathwayExpression
2019
Mammalian TRP ion channels are insensitive to membrane stretch
Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vásquez V, Laver DR, Martinac B. Mammalian TRP ion channels are insensitive to membrane stretch. Journal Of Cell Science 2019, 132: jcs238360. PMID: 31722978, PMCID: PMC6918743, DOI: 10.1242/jcs.238360.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaenorhabditis elegansCHO CellsCricetulusElectrophysiologyHEK293 CellsHeLa CellsHumansMechanotransduction, CellularNeuronsProteolipidsTRPC6 Cation ChannelConceptsTRP channelsTouch-insensitive mutantsMembrane stretchIon channelsTRP ion channel familyIon channel familyTransient receptor potential (TRP) ion channelsTRP ion channelsMammalian subfamiliesMammalian membersPotential ion channelsArtificial bilayer systemInsensitive mutantsCytoplasmic tethersDownstream componentsMechanosensory processesSignaling cascadesChannel familyCellular componentsBlood pressure regulationCell membraneCerebrospinal fluid flowMechanical forcesStretch activationPressure regulationPiezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors
Zheng W, Nikolaev YA, Gracheva EO, Bagriantsev SN. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 17547-17555. PMID: 31413193, PMCID: PMC6717272, DOI: 10.1073/pnas.1910213116.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsCell MembraneCuesHumansIon ChannelsMechanoreceptorsMechanotransduction, CellularMiceOrgan SpecificityProtein BindingStructure-Activity RelationshipTemperatureVertebratesA Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds
Schneider ER, Anderson EO, Feketa VV, Mastrotto M, Nikolaev YA, Gracheva EO, Bagriantsev SN. A Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds. Cell Reports 2019, 26: 1979-1987.e3. PMID: 30784581, PMCID: PMC6420409, DOI: 10.1016/j.celrep.2019.01.100.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAvian ProteinsChick EmbryoDucksFeeding BehaviorIon ChannelsMechanoreceptorsMechanotransduction, CellularSpecies SpecificityTouchTrigeminal GanglionConceptsTrigeminal ganglionPiezo2 ion channelsExpression of moleculesExpression of factorsPiezo2 expressionSomatosensory neuronsNeuronal subtypesSomatosensory systemSuch neuronsSpecialist birdsBird speciesMolecular variationFamily AnatidaeForaging behaviorTactile specializationNeuronsMechanoreceptorsSpecies analysisGangliaGeneral roleBehavioral phenotypesIon channelsGeneral mechanismTactile specialistsFunction of mechanoreceptors
2017
Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling
Friedrich O, Schneidereit D, Nikolaev Y, Nikolova-Krstevski V, Schürmann S, Wirth-Hücking A, Merten A, Fatkin D, Martinac B. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. Progress In Biophysics And Molecular Biology 2017, 130: 170-191. PMID: 28647645, DOI: 10.1016/j.pbiomolbio.2017.06.011.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomechanical PhenomenaBiomedical EngineeringBiosensing TechniquesCardiovascular SystemHumansMechanical PhenomenaMechanotransduction, CellularConceptsFocal adhesion complexesCell-substrate junctionLive-cell imagingMechanosensitive ion channelsDirect mechanistic studiesAdhesion complexesCellular mechanotransductionMembrane junctionsIntracellular signalingMechanotransduction researchCellular stretchCellular modelIon channelsCellular levelCell membraneMechanotransductionIndividual cardiomyocytesBiomedical engineeringMechanical wall stressMembraneMechanistic studiesCellsStretch deviceCardiomyocytesElastomeric membrane
2015
Lipid–protein interactions: Lessons learned from stress
Battle A, Ridone P, Bavi N, Nakayama Y, Nikolaev Y, Martinac B. Lipid–protein interactions: Lessons learned from stress. Biochimica Et Biophysica Acta 2015, 1848: 1744-1756. PMID: 25922225, DOI: 10.1016/j.bbamem.2015.04.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MembraneHumansLipid BilayersMechanotransduction, CellularMembrane LipidsMembrane ProteinsModels, MolecularProtein BindingProtein Structure, TertiaryConceptsLipid-protein interactionsMS channelsLipid bilayersRegulation of cellMechanosensitive membrane channelsMechanosensitive proteinsMembrane proteinsCellular compartmentsTransmembrane portionProkaryotic systemIntracellular signalsPhysical barrierPhysiological processesHypoosmotic shockMembrane channelsMS proteinBiological membranesProteinVariety of rolesCell lysisNormal functionIntracellular spaceEukaryotesCardiac hypertrophyMuscular dystrophy
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply