2024
A spatially constrained independent component analysis jointly informed by structural and functional network connectivity
Fouladivanda M, Iraji A, Wu L, van Erp T, Belger A, Hawamdeh F, Pearlson G, Calhoun V. A spatially constrained independent component analysis jointly informed by structural and functional network connectivity. Network Neuroscience 2024, 8: 1212-1242. PMID: 39735500, PMCID: PMC11674407, DOI: 10.1162/netn_a_00398.Peer-Reviewed Original ResearchIntrinsic connectivity networksFunctional brain connectivityBrain connectivityStructural connectivityFunctional connectivityIndependent component analysisResting-state functional MRIAnalysis of group differencesBrain functional organizationFunctional network connectivityStructural-functional connectivityNeuroimaging studiesFunctional MRIWhole-brain tractographyGroup differencesRs-fMRIBrain disordersFunctional couplingSchizophreniaStatistical analysis of group differencesSubject levelFunctional organizationConnectivity networksBrainDiffusion-weighted MRILocal-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia
Xing Y, Pearlson G, Kochunov P, Calhoun V, Du Y. Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia. NeuroImage 2024, 299: 120839. PMID: 39251116, PMCID: PMC11491165, DOI: 10.1016/j.neuroimage.2024.120839.Peer-Reviewed Original ResearchConceptsSelection methodClassification accuracy gainsGraph-based regularizationHigh-dimensional dataFeature selection methodLocal structural informationSparse regularizationAblation studiesFeature subsetPublic datasetsFeature selectionClassification accuracyExperimental evaluationAccuracy gainsSelection techniquesNetwork connectivityData transformationSuperior performanceDatasetConvergence analysisStructural informationClassificationRegularizationFeaturesDisorder prediction4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia
Pusuluri K, Fu Z, Miller R, Pearlson G, Kochunov P, Van Erp T, Iraji A, Calhoun V. 4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia. Human Brain Mapping 2024, 45: e26773. PMID: 39045900, PMCID: PMC11267451, DOI: 10.1002/hbm.26773.Peer-Reviewed Original ResearchConceptsBrain networksFunctional magnetic resonance imagingAssociated with cognitive performanceDynamics of functional brain networksAssociated with cognitionFunctional brain networksVoxel-wise changesVolumetric couplingDynamical variablesCognitive performanceTypical controlsSchizophreniaCognitive impairmentNetwork pairsMagnetic resonance imagingPair of networksCognitionAtypical variabilityResonance imagingCouplingNetwork connectivityNetwork growthImpairmentBrainStatic networksNeurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm
Jiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye L, Richard G, Fernandez-Cabello S, Parker N, Andreassen O, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin C, Tsai S, Rodrigue A, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León M, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul A, Uslu O, Burhanoglu B, Uyar Demir A, Rootes-Murdy K, Calhoun V, Sim K, Green M, Quidé Y, Chung Y, Kim W, Sponheim S, Demro C, Ramsay I, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park M, Kirschner M, Georgiadis F, Kaiser S, Van Rheenen T, Rossell S, Hughes M, Woods W, Carruthers S, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen D, Preda A, Thomopoulos S, Jahanshad N, Cui L, Yao D, Thompson P, Turner J, van Erp T, Cheng W, Feng J. Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm. Nature Communications 2024, 15: 5996. PMID: 39013848, PMCID: PMC11252381, DOI: 10.1038/s41467-024-50267-3.Peer-Reviewed Original ResearchConceptsGray matter changesDisorder constructsEnlarged striatumPsychiatric conditionsMental disordersSubcortical regionsSchizophreniaBiological foundationsMatter changesBrain imagingStriatumDisordersBiological factorsIndividualsSubtypesHealthy subjectsCross-sectional brain imagingHippocampusTemporal trajectoriesInternational cohortSubgroup 2Subgroup 1SubgroupsAssociation between the oral microbiome and brain resting state connectivity in schizophrenia
Lin D, Fu Z, Liu J, Perrone-Bizzozero N, Hutchison K, Bustillo J, Du Y, Pearlson G, Calhoun V. Association between the oral microbiome and brain resting state connectivity in schizophrenia. Schizophrenia Research 2024, 270: 392-402. PMID: 38986386, DOI: 10.1016/j.schres.2024.06.045.Peer-Reviewed Original ResearchOral microbiomeMicrobial speciesArea under curveResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingMicrobial 16S rRNA sequencingBrain circuit dysfunctionHealthy controlsBrain functional connectivity alterationsFunctional connectivity alterationsFunctional neuroimaging techniquesHypothalamic-pituitary-adrenal axisBrain functional connectivityFunctional network connectivityBrain functional activityBrain functional network connectivityHealthy control subjectsNeurotransmitter signaling pathwaysBeta diversityMicrobiome communitiesOral microbiome dysbiosisRRNA sequencingCircuit dysfunctionConnectivity alterationsSchizophreniaDouble Functionally Independent Primitives Provide Disorder Specific Fingerprints of Mental Illnesses
Soleimani N, Pearlson G, Iraji A, Calhoun V. Double Functionally Independent Primitives Provide Disorder Specific Fingerprints of Mental Illnesses. 2024, 00: 1-4. DOI: 10.1109/isbi56570.2024.10635116.Peer-Reviewed Original ResearchAutism spectrum disorderMental illnessBipolar disorderMental disordersManifestations of mental illnessAssociated with mental illnessFunctional network connectivityFunctional network connectivity patternsNetwork connectivity patternsDisorder-specificDepressive disorderNeural underpinningsSpectrum disorderPsychological disordersNeuroimaging techniquesConnectivity patternsDisordersSchizophreniaHealthy controlsIllnessBrainFunctional changesMDDAutismNetwork connectivityA confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity
Hassanzadeh R, Abrol A, Pearlson G, Turner J, Calhoun V. A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity. PLOS ONE 2024, 19: e0293053. PMID: 38768123, PMCID: PMC11104643, DOI: 10.1371/journal.pone.0293053.Peer-Reviewed Original ResearchConceptsResting-state functional network connectivityFunctional network connectivityResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingAlzheimer's diseaseClassification of schizophreniaNetwork pairsPatients to healthy controlsSchizophrenia patientsNeurobiological mechanismsSZ patientsSubcortical networksCerebellum networkSchizophreniaRs-fMRIDisorder developmentMotor networkCompare patient groupsSubcortical domainSZ disorderHealthy controlsMagnetic resonance imagingDisordersNetwork connectivityFunctional abnormalitiesMore reliable biomarkers and more accurate prediction for mental disorders using a label-noise filtering-based dimensional prediction method
Xing Y, van Erp T, Pearlson G, Kochunov P, Calhoun V, Du Y. More reliable biomarkers and more accurate prediction for mental disorders using a label-noise filtering-based dimensional prediction method. IScience 2024, 27: 109319. PMID: 38482500, PMCID: PMC10933544, DOI: 10.1016/j.isci.2024.109319.Peer-Reviewed Original ResearchDiagnosis of mental disordersMental disordersDiagnostic labelsIntegration of neuroimagingSchizophrenia patientsNeuroimaging measuresNeuroimaging perspectiveFMRI dataStable abnormalitiesNeuroimagingDisordersHealthy controlsIndependent subjectsSchizophreniaFMRIDimensional predictionsSubjectsAccurate diagnosisClassification accuracy
2023
Triple Interactions Between the Environment, Brain, and Behavior in Children: An ABCD Study
Zhi D, Jiang R, Pearlson G, Fu Z, Qi S, Yan W, Feng A, Xu M, Calhoun V, Sui J. Triple Interactions Between the Environment, Brain, and Behavior in Children: An ABCD Study. Biological Psychiatry 2023, 95: 828-838. PMID: 38151182, PMCID: PMC11006588, DOI: 10.1016/j.biopsych.2023.12.019.Peer-Reviewed Original ResearchFunctional network connectivityCognitive abilitiesABCD studyMental healthLongitudinal predictionBehavioral developmentSleep problemsBrain functional network connectivityHigher cognitive abilitiesDefault mode networkChildren's behavioral developmentUnique protective factorsBrain functional connectivityCognitive controlTriple interactionFamily conflictMode networkMediation analysisFunctional connectivityInfluence behaviorFunctional networksProtective factorsSchool environmentChildhood developmentEnvironmental exposuresIdentifying psychosis subtypes use individualized covariance structural differential networks and multi-site clustering
Ji Y, Pearlson G, Bustillo J, Kochunov P, Turner J, Jiang R, Shao W, Zhang X, Fu Z, Li K, Liu Z, Xu X, Zhang D, Qi S, Calhoun V. Identifying psychosis subtypes use individualized covariance structural differential networks and multi-site clustering. Schizophrenia Research 2023, 264: 130-139. PMID: 38128344, DOI: 10.1016/j.schres.2023.12.013.Peer-Reviewed Original ResearchPsychosis subtypesSchizoaffective disorderBipolar disorderClinical phenotypeFirst-degree relativesTemporal-occipital cortexAmygdala-hippocampusClinical symptomsNeuroimaging featuresBipolar-Schizophrenia NetworkBrain alterationsHealthy controlsIntermediate Phenotypes (B-SNIP) consortiumOccipital cortexDecreased connectivitySubtypesStructural covarianceFractional amplitudeSubtype IILow-frequency fluctuationsNeurobiological heterogeneityGreater predispositionPsychosis spectrumGroup differencesDiagnostic classificationSpatial Dynamic Subspaces Encode Sex-Specific Schizophrenia Disruptions in Transient Network Overlap and Their Links to Genetic Risk
Iraji A, Chen J, Lewis N, Faghiri A, Fu Z, Agcaoglu O, Kochunov P, Adhikari B, Mathalon D, Pearlson G, Macciardi F, Preda A, van Erp T, Bustillo J, DĂaz-Caneja C, AndrĂ©s-CamazĂłn P, Dhamala M, Adali T, Calhoun V. Spatial Dynamic Subspaces Encode Sex-Specific Schizophrenia Disruptions in Transient Network Overlap and Their Links to Genetic Risk. Biological Psychiatry 2023, 96: 188-197. PMID: 38070846, PMCID: PMC11156799, DOI: 10.1016/j.biopsych.2023.12.002.Peer-Reviewed Original ResearchRevisiting Functional Dysconnectivity: a Review of Three Model Frameworks in Schizophrenia
Harikumar A, Solovyeva K, Misiura M, Iraji A, Plis S, Pearlson G, Turner J, Calhoun V. Revisiting Functional Dysconnectivity: a Review of Three Model Frameworks in Schizophrenia. Current Neurology And Neuroscience Reports 2023, 23: 937-946. PMID: 37999830, PMCID: PMC11126894, DOI: 10.1007/s11910-023-01325-8.Peer-Reviewed Original ResearchConceptsNetwork dysconnectivityFunctional dysconnectivityExecutive functioningState fMRI studyAttentional deficitsFMRI studyHypothesized modelSalience networkBrain networksConnectivity findingsBehavioral symptomsNeurodevelopmental modelSymptom severityDysconnectivityHypothesized mechanismsSchizophreniaDeficitsVital modelsSummaryThis paperMotor symptomsFunctioningSymptomsFindingsPurpose of ReviewOverThoughtAge-related, multivariate associations between white matter microstructure and behavioral performance in three executive function domains
Anderson J, Calhoun V, Pearlson G, Hawkins K, Stevens M. Age-related, multivariate associations between white matter microstructure and behavioral performance in three executive function domains. Developmental Cognitive Neuroscience 2023, 64: 101318. PMID: 37875033, PMCID: PMC10618425, DOI: 10.1016/j.dcn.2023.101318.Peer-Reviewed Original ResearchConceptsExecutive function domainsResponse inhibitionWhite matter microstructureLower response inhibitionStructure-cognition relationshipsEF abilitiesBehavioral performanceCognitive imbalanceNeurocognitive testsFunction domainTest performanceYoung adulthoodFractional anisotropyBrain changesAge 12Young adultsSS performanceWhite matter FA valuesGreater relianceWhite matter changesWhite matter microstructural differencesSubjects ages 12White matter skeletonIndependent componentsMultivariate associationsA Brainwide Risk Score for Psychiatric Disorder Evaluated in a Large Adolescent Population Reveals Increased Divergence Among Higher-Risk Groups Relative to Control Participants
Yan W, Pearlson G, Fu Z, Li X, Iraji A, Chen J, Sui J, Volkow N, Calhoun V. A Brainwide Risk Score for Psychiatric Disorder Evaluated in a Large Adolescent Population Reveals Increased Divergence Among Higher-Risk Groups Relative to Control Participants. Biological Psychiatry 2023, 95: 699-708. PMID: 37769983, PMCID: PMC10942727, DOI: 10.1016/j.biopsych.2023.09.017.Peer-Reviewed Original ResearchFunctional network connectivityHealthy control individualsPsychiatric disordersRisk scoreEarly psychosisPsychiatric riskControl individualsStudy participantsHigh-risk groupMajor depressive disorderHigh-risk patternsPsychiatric risk assessmentCognitive Development StudyUnaffected adolescentsAdolescent Brain Cognitive Development (ABCD) studyLarge adolescent populationDepressive disorderHigh riskPsychosis scoresBipolar disorderPotential biomarkersEarly screeningPsychiatric vulnerabilityAdolescent populationDisorders
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply