2024
Brain networks and intelligence: A graph neural network based approach to resting state fMRI data
Thapaliya B, Akbas E, Chen J, Sapkota R, Ray B, Suresh P, Calhoun V, Liu J. Brain networks and intelligence: A graph neural network based approach to resting state fMRI data. Medical Image Analysis 2024, 101: 103433. PMID: 39708510, PMCID: PMC11877132, DOI: 10.1016/j.media.2024.103433.Peer-Reviewed Original ResearchConceptsGraph neural networksNeural networkGraph isomorphism networkGraph convolutional layersGraph convolutional networkMachine learning modelsNetwork connectivity matrixCognitive processesConvolutional layersConvolutional networkPrediction taskModel architectureGraph architectureAdolescent Brain Cognitive Development datasetResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingLearning modelsMiddle frontal gyrusPredicting individual differencesResting state fMRI dataPredictive intelligenceIntelligenceNetworkFunctional network connectivity matricesArchitectureA multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
Bi Y, Abrol A, Fu Z, Calhoun V. A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data. Human Brain Mapping 2024, 45: e26783. PMID: 39600159, PMCID: PMC11599617, DOI: 10.1002/hbm.26783.Peer-Reviewed Original ResearchConceptsCross-attention mechanismVision transformerDeep learning modelsBrain disordersCharacteristics of schizophreniaDiagnosis of schizophreniaStructural neuroimaging dataNetwork connectivity matrixData fusion approachAttention mapsMultimodal baselinesFunctional network connectivityFuse informationDeep learningICA algorithmFusion approachGrey matter mapsAI algorithmsFunctional network connectivity matricesLeverage multiple sources of informationGray matter imagesLearning modelsMultiple sources of informationBrain imaging modalitiesNetwork connectivityA Method for Multimodal IVA Fusion Within a MISA Unified Model Reveals Markers of Age, Sex, Cognition, and Schizophrenia in Large Neuroimaging Studies
Silva R, Damaraju E, Li X, Kochunov P, Ford J, Mathalon D, Turner J, van Erp T, Adali T, Calhoun V. A Method for Multimodal IVA Fusion Within a MISA Unified Model Reveals Markers of Age, Sex, Cognition, and Schizophrenia in Large Neuroimaging Studies. Human Brain Mapping 2024, 45: e70037. PMID: 39560198, PMCID: PMC11574741, DOI: 10.1002/hbm.70037.Peer-Reviewed Original ResearchConceptsMultimodal neuroimaging datasetSchizophrenia patientsNeuroimaging studiesCognitive performanceGroup differencesSchizophreniaSex effectsNeuroimaging datasetsMagnetic resonance imagingCognitionAge-associated declineControl subjectsMarkers of agingResonance imagingNon-imaging variablesSubject profilesSexNeuroimagingUK Biobank datasetInterplay between preclinical indices of obesity and neural signatures of fluid intelligence in youth
Ward T, Schantell M, Dietz S, Ende G, Rice D, Coutant A, Arif Y, Wang Y, Calhoun V, Stephen J, Heinrichs-Graham E, Taylor B, Wilson T. Interplay between preclinical indices of obesity and neural signatures of fluid intelligence in youth. Communications Biology 2024, 7: 1285. PMID: 39379610, PMCID: PMC11461743, DOI: 10.1038/s42003-024-06924-w.Peer-Reviewed Original ResearchConceptsAbstract reasoning taskFluid intelligenceAbstract reasoningBrain regionsNeural activityReasoning tasksLeft dorsolateral prefrontal cortexLeft temporoparietal junctionDorsolateral prefrontal cortexHigher-order cognitionWhole-brain correlationHigh-density magnetoencephalographySignificant oscillatory responsesYouth aged 9Prefrontal cortexTemporoparietal junctionNeural signaturesTheta oscillationsResponse scaleWhole-brainNeurobehavioral functionNeural dynamicsAged 9CognitionReaction timeLocal-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia
Xing Y, Pearlson G, Kochunov P, Calhoun V, Du Y. Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia. NeuroImage 2024, 299: 120839. PMID: 39251116, PMCID: PMC11491165, DOI: 10.1016/j.neuroimage.2024.120839.Peer-Reviewed Original ResearchConceptsSelection methodClassification accuracy gainsGraph-based regularizationHigh-dimensional dataFeature selection methodLocal structural informationSparse regularizationAblation studiesFeature subsetPublic datasetsFeature selectionClassification accuracyExperimental evaluationAccuracy gainsSelection techniquesNetwork connectivityData transformationSuperior performanceDatasetConvergence analysisStructural informationClassificationRegularizationFeaturesDisorder predictionNeurodevelopmental subtypes of functional brain organization in the ABCD study using a rigorous analytic framework
DeRosa J, Friedman N, Calhoun V, Banich M. Neurodevelopmental subtypes of functional brain organization in the ABCD study using a rigorous analytic framework. NeuroImage 2024, 299: 120827. PMID: 39245397, PMCID: PMC11779700, DOI: 10.1016/j.neuroimage.2024.120827.Peer-Reviewed Original ResearchConceptsResting-state functional connectivityAdolescent Brain Cognitive DevelopmentIndividual’s resting-state functional connectivityAdolescent Brain Cognitive Development StudyFunctional brain organizationMental health profilesMental health characteristicsRsFC dataBrain organizationFunctional connectivityDevelopmental trajectoriesChildren aged 9Emotional functioningCognitive developmentLate childhoodAged 9SubtypesAdolescentsHealth characteristicsHealth profileChildhoodCommon and unique brain aging patterns between females and males quantified by large‐scale deep learning
Du Y, Yuan Z, Sui J, Calhoun V. Common and unique brain aging patterns between females and males quantified by large‐scale deep learning. Human Brain Mapping 2024, 45: e70005. PMID: 39225381, PMCID: PMC11369911, DOI: 10.1002/hbm.70005.Peer-Reviewed Original ResearchConceptsBrain functional changesFunctional connectivityCognitive controlBrain agingBrain functionPatterns of brain agingResting-state brain functional connectivityBrain functional interactionsBrain functional connectivityHuman brain functionBrain aging patternsGender commonalitiesAge-related changesDeep learningHealthy participantsNormal agingNegative connectionFunctional changesBrainPositive connectionDeep learning modelsFunctional domainsAge effectsFunctional interactionsCross-validation schemeJoint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders
Ji Y, Silva R, Adali T, Wen X, Zhu Q, Jiang R, Zhang D, Qi S, Calhoun V. Joint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders. NeuroImage Clinical 2024, 43: 103663. PMID: 39226701, PMCID: PMC11639356, DOI: 10.1016/j.nicl.2024.103663.Peer-Reviewed Original ResearchAssociations of alcohol and tobacco use with psychotic, depressive and developmental disorders revealed via multimodal neuroimaging
Qiu L, Liang C, Kochunov P, Hutchison K, Sui J, Jiang R, Zhi D, Vergara V, Yang X, Zhang D, Fu Z, Bustillo J, Qi S, Calhoun V. Associations of alcohol and tobacco use with psychotic, depressive and developmental disorders revealed via multimodal neuroimaging. Translational Psychiatry 2024, 14: 326. PMID: 39112461, PMCID: PMC11306356, DOI: 10.1038/s41398-024-03035-2.Peer-Reviewed Original ResearchConceptsFronto-limbic networkSalience networkAssociated with cognitionFronto-basal gangliaDevelopmental disordersBrain networksLimbic systemAlcohol useAssociated with alcohol useMultimodal brain networksTobacco useAssociation of alcoholPsychiatric disordersMultimodal neuroimagingDMNBrain featuresCognitionAlcohol/tobacco useDisordersAssociated with tobacco useDepressionSymptomsFunctional abnormalitiesAlcoholBrain4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia
Pusuluri K, Fu Z, Miller R, Pearlson G, Kochunov P, Van Erp T, Iraji A, Calhoun V. 4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia. Human Brain Mapping 2024, 45: e26773. PMID: 39045900, PMCID: PMC11267451, DOI: 10.1002/hbm.26773.Peer-Reviewed Original ResearchConceptsBrain networksFunctional magnetic resonance imagingAssociated with cognitive performanceDynamics of functional brain networksAssociated with cognitionFunctional brain networksVoxel-wise changesVolumetric couplingDynamical variablesCognitive performanceTypical controlsSchizophreniaCognitive impairmentNetwork pairsMagnetic resonance imagingPair of networksCognitionAtypical variabilityResonance imagingCouplingNetwork connectivityNetwork growthImpairmentBrainStatic networksNeurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm
Jiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye L, Richard G, Fernandez-Cabello S, Parker N, Andreassen O, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin C, Tsai S, Rodrigue A, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León M, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul A, Uslu O, Burhanoglu B, Uyar Demir A, Rootes-Murdy K, Calhoun V, Sim K, Green M, Quidé Y, Chung Y, Kim W, Sponheim S, Demro C, Ramsay I, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park M, Kirschner M, Georgiadis F, Kaiser S, Van Rheenen T, Rossell S, Hughes M, Woods W, Carruthers S, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen D, Preda A, Thomopoulos S, Jahanshad N, Cui L, Yao D, Thompson P, Turner J, van Erp T, Cheng W, Feng J. Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm. Nature Communications 2024, 15: 5996. PMID: 39013848, PMCID: PMC11252381, DOI: 10.1038/s41467-024-50267-3.Peer-Reviewed Original ResearchConceptsGray matter changesDisorder constructsEnlarged striatumPsychiatric conditionsMental disordersSubcortical regionsSchizophreniaBiological foundationsMatter changesBrain imagingStriatumDisordersBiological factorsIndividualsSubtypesHealthy subjectsCross-sectional brain imagingHippocampusTemporal trajectoriesInternational cohortSubgroup 2Subgroup 1SubgroupsEffects of endogenous testosterone on oscillatory activity during verbal working memory in youth
Killanin A, Ward T, Embury C, Calhoun V, Wang Y, Stephen J, Picci G, Heinrichs‐Graham E, Wilson T. Effects of endogenous testosterone on oscillatory activity during verbal working memory in youth. Human Brain Mapping 2024, 45: e26774. PMID: 38949599, PMCID: PMC11215982, DOI: 10.1002/hbm.26774.Peer-Reviewed Original ResearchConceptsVerbal working memoryVerbal working memory processingWorking memory processesWorking memoryEffects of chronological ageEndogenous testosterone levelsMemory processesOscillatory activitySternberg verbal working memory taskEffects of testosteroneLeft-lateralized language networkVerbal working memory taskAlpha oscillationsSalivary testosterone samplesWorking memory encodingWorking memory taskLeft temporal cortexRight cerebellar cortexNeural oscillatory activitySignificant oscillatory responsesNeural oscillatory dynamicsHuman brain structureCerebellar cortexYouth aged 6Chronological ageNeural Complexity Unveiled: Doubly Functionally Independent Primitives (dFIPs) in Psychiatric Risk Score Assessment
Soleimani N, Calhoun V. Neural Complexity Unveiled: Doubly Functionally Independent Primitives (dFIPs) in Psychiatric Risk Score Assessment. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039582, DOI: 10.1109/embc53108.2024.10781623.Peer-Reviewed Original ResearchConceptsFunctional network connectivityAutism spectrum disorderBipolar disorderPsychiatric disordersDepressive disorderAdolescent brainNeural underpinningsPolygenic risk scoresPsychiatric riskSpectrum disorderDifferential contributionsDisordersMDDHigh-risk scoreSchizophreniaHealthy controlsRisk scoreScoresIndividualsPsychiatricAutismNetwork connectivityNeuroimagingRisk score assessmentElevated risk scoresInter-modality source coupling: a fully automated whole-brain data-driven structure-function fingerprint shows replicable links to reading in large-scale (N~8K) analysis
Kotoski A, Morris R, Calhoun V. Inter-modality source coupling: a fully automated whole-brain data-driven structure-function fingerprint shows replicable links to reading in large-scale (N~8K) analysis. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039662, DOI: 10.1109/embc53108.2024.10781720.Peer-Reviewed Original ResearchPath-based Differential Analysis in Near-centenarians and Centenarians Brain Network
Falakshahi H, Rokham H, Calhoun V. Path-based Differential Analysis in Near-centenarians and Centenarians Brain Network. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039654, DOI: 10.1109/embc53108.2024.10781732.Peer-Reviewed Original ResearchConceptsCognitive control domainsBrain networksCognitive functionPreservation of cognitive functionPromote cognitive healthInvestigate brain networksGaussian graphical modelsControl domainCognitive agingNeural mechanismsGraph theory techniquesGraphical modelsCognitive healthIntricate informationBrain graphsNear-centenariansGroup graphGraphNetworkGraph metricsGraph theoryAging StudyBrainTargeted interventionsYounger groupCross-Modality Translation with Generative Adversarial Networks to Unveil Alzheimer’s Disease Biomarkers
Hassanzadeh R, Abrol A, Hassanzadeh H, Calhoun V. Cross-Modality Translation with Generative Adversarial Networks to Unveil Alzheimer’s Disease Biomarkers. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039975, DOI: 10.1109/embc53108.2024.10781737.Peer-Reviewed Original ResearchConceptsFunctional network connectivityGenerative adversarial networkStructural similarity index measureT1-weighted structural magnetic resonance imaging dataAdversarial networkStructural magnetic resonance imaging dataIncreased functional connectivityMagnetic resonance imaging dataSimilarity index measureCross-modal transformerCross-modal translationPatterns of atrophyAlzheimer's diseaseFunctional connectivityReduced connectivityMotor-visualTemporal regionsWeak supervisionAlzheimer's disease biomarkersControl networkCycle-GANCross-modalAlzheimer patientsContext of Alzheimer's diseaseGeneration approachA deep spatio-temporal attention model of dynamic functional network connectivity shows sensitivity to Alzheimer’s in asymptomatic individuals
Wei Y, Abrol A, Lah J, Qiu D, Calhoun V. A deep spatio-temporal attention model of dynamic functional network connectivity shows sensitivity to Alzheimer’s in asymptomatic individuals. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039841, DOI: 10.1109/embc53108.2024.10781740.Peer-Reviewed Original ResearchConceptsDynamic functional network connectivityFunctional magnetic resonance imagingSpatio-temporal attention modelNetwork connectivityMild cognitive impairmentDeep learning advancesFunctional network connectivityMachine learning methodsSelf-attentionAttention modelAt-risk subjectsLearning methodsLearning advancesAlzheimer's diseaseNetwork dependenceEvaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data*
Ellis C, Miller R, Calhoun V. Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data*. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-5. PMID: 40039441, DOI: 10.1109/embc53108.2024.10782103.Peer-Reviewed Original ResearchConceptsAugmented training setData augmentationTraining setDA methodsDeep learning methodsDA approachNeuropsychiatric disorder diagnosisModel performanceTraining dataDeep learningEEG datasetDataset sizeLearning methodsAugmentation approachImprove model performanceDepressive disorder diagnosisDA efficacyDatasetDisorder diagnosisCompare performanceMajor depressive disorder diagnosisPerformanceBaseline setDeepChannelBrain community detection in the general children population
Farahdel B, Thapaliya B, Suresh P, Ray B, Calhoun V, Liu J. Brain community detection in the general children population. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-6. PMID: 40040186, DOI: 10.1109/embc53108.2024.10782157.Peer-Reviewed Original ResearchNeuroMark PET: Replicable positron emission tomography ICA templates for florbetapir and florbetaben radioligands
Eierud C, Fu Z, Petropoulos H, Bohsali A, Iraji A, Ganz M, Pernet C, Calhoun V. NeuroMark PET: Replicable positron emission tomography ICA templates for florbetapir and florbetaben radioligands. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039357, DOI: 10.1109/embc53108.2024.10782228.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply