2024
A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
Bi Y, Abrol A, Fu Z, Calhoun V. A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data. Human Brain Mapping 2024, 45: e26783. PMID: 39600159, PMCID: PMC11599617, DOI: 10.1002/hbm.26783.Peer-Reviewed Original ResearchConceptsCross-attention mechanismVision transformerDeep learning modelsBrain disordersCharacteristics of schizophreniaDiagnosis of schizophreniaStructural neuroimaging dataNetwork connectivity matrixData fusion approachAttention mapsMultimodal baselinesFunctional network connectivityFuse informationDeep learningICA algorithmFusion approachGrey matter mapsAI algorithmsFunctional network connectivity matricesLeverage multiple sources of informationGray matter imagesLearning modelsMultiple sources of informationBrain imaging modalitiesNetwork connectivityImaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders
Rahaman A, Garg Y, Iraji A, Fu Z, Kochunov P, Hong L, Van Erp T, Preda A, Chen J, Calhoun V. Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders. Human Brain Mapping 2024, 45: e26799. PMID: 39562310, PMCID: PMC11576332, DOI: 10.1002/hbm.26799.Peer-Reviewed Original ResearchConceptsNeural networkDilated convolutional neural networkJoint learning frameworkAttention scoresState-of-the-artDeep neural networksNeural network decisionsConvolutional neural networkAttention fusionFusion moduleDiverse data sourcesArtificial intelligence modelsLearning frameworkAttention moduleJoint learningMultimodal clusteringNetwork decisionsInput streamMultimodal learningHigh-dimensionalIntermediate fusionFused dataSZ classificationIntelligence modelsContextual patternsCommon and unique brain aging patterns between females and males quantified by large‐scale deep learning
Du Y, Yuan Z, Sui J, Calhoun V. Common and unique brain aging patterns between females and males quantified by large‐scale deep learning. Human Brain Mapping 2024, 45: e70005. PMID: 39225381, PMCID: PMC11369911, DOI: 10.1002/hbm.70005.Peer-Reviewed Original ResearchConceptsBrain functional changesFunctional connectivityCognitive controlBrain agingBrain functionPatterns of brain agingResting-state brain functional connectivityBrain functional interactionsBrain functional connectivityHuman brain functionBrain aging patternsGender commonalitiesAge-related changesDeep learningHealthy participantsNormal agingNegative connectionFunctional changesBrainPositive connectionDeep learning modelsFunctional domainsAge effectsFunctional interactionsCross-validation schemeA deep spatio-temporal attention model of dynamic functional network connectivity shows sensitivity to Alzheimer’s in asymptomatic individuals
Wei Y, Abrol A, Lah J, Qiu D, Calhoun V. A deep spatio-temporal attention model of dynamic functional network connectivity shows sensitivity to Alzheimer’s in asymptomatic individuals. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039841, DOI: 10.1109/embc53108.2024.10781740.Peer-Reviewed Original ResearchMeSH KeywordsAgedAlzheimer DiseaseBrainCognitive DysfunctionDeep LearningFemaleHumansMagnetic Resonance ImagingMaleNerve NetConceptsDynamic functional network connectivityFunctional magnetic resonance imagingSpatio-temporal attention modelNetwork connectivityMild cognitive impairmentDeep learning advancesFunctional network connectivityMachine learning methodsSelf-attentionAttention modelAt-risk subjectsLearning methodsLearning advancesAlzheimer's diseaseNetwork dependenceIdentifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach
Sancho M, Ellis C, Miller R, Calhoun V. Identifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039893, DOI: 10.1109/embc53108.2024.10781959.Peer-Reviewed Original ResearchConceptsDeep learning approachLearning-based studiesMachine learning methodsMachine learning modelsMachine learning-based studiesExplainability approachesCross-validation foldsLearning methodsLearning approachLearning modelsDevelopment of robust approachesMachineDiagnosis of schizophreniaDiverse symptom presentationsPower dataBiomarkers of SZRobust approachFrequency bandLeft hemisphereSpectral power dataEvaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data*
Ellis C, Miller R, Calhoun V. Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data*. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-5. PMID: 40039441, DOI: 10.1109/embc53108.2024.10782103.Peer-Reviewed Original ResearchConceptsAugmented training setData augmentationTraining setDA methodsDeep learning methodsDA approachNeuropsychiatric disorder diagnosisModel performanceTraining dataDeep learningEEG datasetDataset sizeLearning methodsAugmentation approachImprove model performanceDepressive disorder diagnosisDA efficacyDatasetDisorder diagnosisCompare performanceMajor depressive disorder diagnosisPerformanceBaseline setDeepChannelLabel Noise-Robust Ensemble Deep Multimodal Framework For Neuroimaging Data
Rokham H, Falakshahi H, Calhoun V. Label Noise-Robust Ensemble Deep Multimodal Framework For Neuroimaging Data. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039505, DOI: 10.1109/embc53108.2024.10782672.Peer-Reviewed Original ResearchConceptsLabel noiseEffects of label noiseBrain-based markersSelf-report assessmentsLabel noise problemFunctional MRI dataDeep convolutional frameworkDeep learning modelsK-fold cross-validation techniqueAssessment of diagnosisNosological categoriesCross-validation techniqueNeuroimaging dataMental illnessClassification performanceConvolutional frameworkDiagnostic categoriesDiagnostic classificationEnsemble methodsMultimodal frameworkLearning modelsSubsets of dataBagging approachK-foldNeuroimagingA survey of brain functional network extraction methods using fMRI data
Du Y, Fang S, He X, Calhoun V. A survey of brain functional network extraction methods using fMRI data. Trends In Neurosciences 2024, 47: 608-621. PMID: 38906797, DOI: 10.1016/j.tins.2024.05.011.Peer-Reviewed Original ResearchMeSH KeywordsBrainBrain MappingDeep LearningHumansImage Processing, Computer-AssistedMagnetic Resonance ImagingNerve Net
2023
Neuropsychiatric Disorder Subtyping Via Clustered Deep Learning Classifier Explanations *
Ellis C, Miller R, Calhoun V. Neuropsychiatric Disorder Subtyping Via Clustered Deep Learning Classifier Explanations *. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2023, 00: 1-4. PMID: 38083012, DOI: 10.1109/embc40787.2023.10340837.Peer-Reviewed Original ResearchConceptsDynamic functional network connectivityResting-state functional magnetic resonanceFunctional magnetic resonanceNeuropsychiatric disordersFunctional network connectivityCharacterization of schizophreniaCognitive controlDeep learning classifierContext of schizophreniaAuditory networkBrain activityBrain networksVisual networkSubcortical networksCerebellar networkA Deep Learning Approach for Psychosis Spectrum Label Noise Detection from Multimodal Neuroimaging Data
Rokham H, Falakshahi H, Calhoun V. A Deep Learning Approach for Psychosis Spectrum Label Noise Detection from Multimodal Neuroimaging Data. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2023, 00: 1-4. PMID: 38082903, DOI: 10.1109/embc40787.2023.10339949.Peer-Reviewed Original ResearchConceptsStructural MRI dataResting-state functional MRI dataFunctional MRI dataFunctional magnetic resonance imaging dataMRI dataMagnetic resonance imaging dataSchizophrenia patientsFunctional connectivity featuresBrain imaging modalitiesMental disordersNeuroimaging dataNeuroimaging techniquesBorderline subjectsHealthy control groupSchizophrenia datasetSchizophreniaConnectivity featuresBrainPsychosisMoodNosologyControl groupDisordersLabel noiseSubjects
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply