2024
A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
Bi Y, Abrol A, Fu Z, Calhoun V. A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data. Human Brain Mapping 2024, 45: e26783. PMID: 39600159, PMCID: PMC11599617, DOI: 10.1002/hbm.26783.Peer-Reviewed Original ResearchConceptsCross-attention mechanismVision transformerDeep learning modelsBrain disordersCharacteristics of schizophreniaDiagnosis of schizophreniaStructural neuroimaging dataNetwork connectivity matrixData fusion approachAttention mapsMultimodal baselinesFunctional network connectivityFuse informationDeep learningICA algorithmFusion approachGrey matter mapsAI algorithmsFunctional network connectivity matricesLeverage multiple sources of informationGray matter imagesLearning modelsMultiple sources of informationBrain imaging modalitiesNetwork connectivityA Method for Multimodal IVA Fusion Within a MISA Unified Model Reveals Markers of Age, Sex, Cognition, and Schizophrenia in Large Neuroimaging Studies
Silva R, Damaraju E, Li X, Kochunov P, Ford J, Mathalon D, Turner J, van Erp T, Adali T, Calhoun V. A Method for Multimodal IVA Fusion Within a MISA Unified Model Reveals Markers of Age, Sex, Cognition, and Schizophrenia in Large Neuroimaging Studies. Human Brain Mapping 2024, 45: e70037. PMID: 39560198, PMCID: PMC11574741, DOI: 10.1002/hbm.70037.Peer-Reviewed Original ResearchConceptsMultimodal neuroimaging datasetSchizophrenia patientsNeuroimaging studiesCognitive performanceGroup differencesSchizophreniaSex effectsNeuroimaging datasetsMagnetic resonance imagingCognitionAge-associated declineControl subjectsMarkers of agingResonance imagingNon-imaging variablesSubject profilesSexNeuroimagingUK Biobank datasetImaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders
Rahaman A, Garg Y, Iraji A, Fu Z, Kochunov P, Hong L, Van Erp T, Preda A, Chen J, Calhoun V. Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders. Human Brain Mapping 2024, 45: e26799. PMID: 39562310, PMCID: PMC11576332, DOI: 10.1002/hbm.26799.Peer-Reviewed Original ResearchConceptsNeural networkDilated convolutional neural networkJoint learning frameworkAttention scoresState-of-the-artDeep neural networksNeural network decisionsConvolutional neural networkAttention fusionFusion moduleDiverse data sourcesArtificial intelligence modelsLearning frameworkAttention moduleJoint learningMultimodal clusteringNetwork decisionsInput streamMultimodal learningHigh-dimensionalIntermediate fusionFused dataSZ classificationIntelligence modelsContextual patternsLocal-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia
Xing Y, Pearlson G, Kochunov P, Calhoun V, Du Y. Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia. NeuroImage 2024, 299: 120839. PMID: 39251116, PMCID: PMC11491165, DOI: 10.1016/j.neuroimage.2024.120839.Peer-Reviewed Original ResearchMeSH KeywordsAdultBiomarkersBrainFemaleHumansMagnetic Resonance ImagingMaleNeuroimagingSchizophreniaConceptsSelection methodClassification accuracy gainsGraph-based regularizationHigh-dimensional dataFeature selection methodLocal structural informationSparse regularizationAblation studiesFeature subsetPublic datasetsFeature selectionClassification accuracyExperimental evaluationAccuracy gainsSelection techniquesNetwork connectivityData transformationSuperior performanceDatasetConvergence analysisStructural informationClassificationRegularizationFeaturesDisorder predictionJoint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders
Ji Y, Silva R, Adali T, Wen X, Zhu Q, Jiang R, Zhang D, Qi S, Calhoun V. Joint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders. NeuroImage Clinical 2024, 43: 103663. PMID: 39226701, PMCID: PMC11639356, DOI: 10.1016/j.nicl.2024.103663.Peer-Reviewed Original Research4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia
Pusuluri K, Fu Z, Miller R, Pearlson G, Kochunov P, Van Erp T, Iraji A, Calhoun V. 4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia. Human Brain Mapping 2024, 45: e26773. PMID: 39045900, PMCID: PMC11267451, DOI: 10.1002/hbm.26773.Peer-Reviewed Original ResearchMeSH KeywordsAdultBrainCognitive DysfunctionConnectomeFemaleHumansMagnetic Resonance ImagingMaleNerve NetSchizophreniaYoung AdultConceptsBrain networksFunctional magnetic resonance imagingAssociated with cognitive performanceDynamics of functional brain networksAssociated with cognitionFunctional brain networksVoxel-wise changesVolumetric couplingDynamical variablesCognitive performanceTypical controlsSchizophreniaCognitive impairmentNetwork pairsMagnetic resonance imagingPair of networksCognitionAtypical variabilityResonance imagingCouplingNetwork connectivityNetwork growthImpairmentBrainStatic networksNeurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm
Jiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye L, Richard G, Fernandez-Cabello S, Parker N, Andreassen O, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin C, Tsai S, Rodrigue A, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León M, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul A, Uslu O, Burhanoglu B, Uyar Demir A, Rootes-Murdy K, Calhoun V, Sim K, Green M, Quidé Y, Chung Y, Kim W, Sponheim S, Demro C, Ramsay I, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park M, Kirschner M, Georgiadis F, Kaiser S, Van Rheenen T, Rossell S, Hughes M, Woods W, Carruthers S, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen D, Preda A, Thomopoulos S, Jahanshad N, Cui L, Yao D, Thompson P, Turner J, van Erp T, Cheng W, Feng J. Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm. Nature Communications 2024, 15: 5996. PMID: 39013848, PMCID: PMC11252381, DOI: 10.1038/s41467-024-50267-3.Peer-Reviewed Original ResearchConceptsGray matter changesDisorder constructsEnlarged striatumPsychiatric conditionsMental disordersSubcortical regionsSchizophreniaBiological foundationsMatter changesBrain imagingStriatumDisordersBiological factorsIndividualsSubtypesHealthy subjectsCross-sectional brain imagingHippocampusTemporal trajectoriesInternational cohortSubgroup 2Subgroup 1SubgroupsNeural Complexity Unveiled: Doubly Functionally Independent Primitives (dFIPs) in Psychiatric Risk Score Assessment
Soleimani N, Calhoun V. Neural Complexity Unveiled: Doubly Functionally Independent Primitives (dFIPs) in Psychiatric Risk Score Assessment. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039582, DOI: 10.1109/embc53108.2024.10781623.Peer-Reviewed Original ResearchConceptsFunctional network connectivityAutism spectrum disorderBipolar disorderPsychiatric disordersDepressive disorderAdolescent brainNeural underpinningsPolygenic risk scoresPsychiatric riskSpectrum disorderDifferential contributionsDisordersMDDHigh-risk scoreSchizophreniaHealthy controlsRisk scoreScoresIndividualsPsychiatricAutismNetwork connectivityNeuroimagingRisk score assessmentElevated risk scoresA Cross-Feature Mutual Learning Framework to Integrate Functional Connectivity and Activity for Brain Disorder Classification
Zhao M, Xu R, Zhi D, Yu S, Calhoun V, Sui J. A Cross-Feature Mutual Learning Framework to Integrate Functional Connectivity and Activity for Brain Disorder Classification. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40038938, DOI: 10.1109/embc53108.2024.10781810.Peer-Reviewed Original ResearchConceptsLearning frameworkMutual learning frameworkEnd-to-endDeep learning approachMutual knowledge transferEnsemble decisionClassification performanceCross featuresJoint lossLearning approachNetwork connectivityKnowledge transferEncodingAdaptive integrationIndependent componentsCollaborative learningDynamic dependenceTC-specificRobust characteristicsLearningStudy of brain disordersDisorder classificationEmpirical resultsCross-modal modulationAccuracyIdentifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach
Sancho M, Ellis C, Miller R, Calhoun V. Identifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039893, DOI: 10.1109/embc53108.2024.10781959.Peer-Reviewed Original ResearchConceptsDeep learning approachLearning-based studiesMachine learning methodsMachine learning modelsMachine learning-based studiesExplainability approachesCross-validation foldsLearning methodsLearning approachLearning modelsDevelopment of robust approachesMachineDiagnosis of schizophreniaDiverse symptom presentationsPower dataBiomarkers of SZRobust approachFrequency bandLeft hemisphereSpectral power dataExploring Schizophrenia Classification in fMRI Data: A Common Spatial Patterns(CSP) Approach for Enhanced Feature Extraction and Classification
Esfahani M, Miller R, Calhoun V. Exploring Schizophrenia Classification in fMRI Data: A Common Spatial Patterns(CSP) Approach for Enhanced Feature Extraction and Classification. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40040201, DOI: 10.1109/embc53108.2024.10782387.Peer-Reviewed Original ResearchConceptsImplementation of deep learning modelsNetwork connectivityUnsupervised dimensionality reduction techniquesTime-varying network connectivityEnhanced feature extractionDimensionality reduction techniquesDeep learning modelsMotor imagery tasksFeature extractionElectroencephalogram signalsTransformation of signalsEEG signalsPrincipal component analysisLearning modelsData typesCSP methodApplication of CSPSchizophrenia classificationFMRI datasetsReduction techniquesImagery tasksDatasetCSPDataClassificationBeyond Artifacts: Rethinking Motion-Related Signals in Resting-State fMRI Analysis
Kumar S, Kinsey S, Jensen K, Bajracharya P, Calhoun V, Iraji A. Beyond Artifacts: Rethinking Motion-Related Signals in Resting-State fMRI Analysis. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40040138, DOI: 10.1109/embc53108.2024.10782518.Peer-Reviewed Original ResearchConceptsFunctional network connectivityBOLD time seriesImpact of head motionHead motion dataLarge-scale brain networksIntrinsic brain functional connectivityResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingFunctional brain connectivityResting-state fMRI analysisRsfMRI dataBOLD fMRIHead motionBrain functional connectivityHealthy controlsBOLD signalBrain connectivityBrain networksMotion dataFMRI analysisFunctional connectivityClinical populationsMotion-related signalsClinical implicationsBOLDUncovering Effects of Schizophrenia upon a Maximally Significant, Minimally Complex Subset of Default Mode Network Connectivity Features
Seraji M, Ellis C, Sendi M, Miller R, Calhoun V. Uncovering Effects of Schizophrenia upon a Maximally Significant, Minimally Complex Subset of Default Mode Network Connectivity Features. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039134, DOI: 10.1109/embc53108.2024.10782953.Peer-Reviewed Original ResearchMeSH KeywordsAdultBrainCase-Control StudiesDefault Mode NetworkFemaleHumansMagnetic Resonance ImagingMaleNerve NetSchizophreniaConceptsDynamic functional network connectivityDFNC dataDynamic functional network connectivity stateResting state functional magnetic resonance imagingFunctional network connectivityFunctional magnetic resonance imagingHealthy controlsEffect of schizophreniaCingulate cortexNetwork connectivity featuresNeuropsychiatric disordersSchizophreniaAnticorrelationDynamicsEstimation of complete mutual information exploiting nonlinear magnitude-phase dependence: Application to spatial FNC for complex-valued fMRI data
Li W, Lin Q, Zhang C, Han Y, Li H, Calhoun V. Estimation of complete mutual information exploiting nonlinear magnitude-phase dependence: Application to spatial FNC for complex-valued fMRI data. Journal Of Neuroscience Methods 2024, 409: 110207. PMID: 38944128, DOI: 10.1016/j.jneumeth.2024.110207.Peer-Reviewed Original ResearchConceptsComplex-valued fMRI dataMutual informationJoint entropyNetwork connectivityComplex-valued signalsFunctional network connectivityMagnitude-phase dependenceDensity estimation methodMI estimationHistogram-basedKernel density estimation methodFMRI dataEstimation accuracyProbability density functionJoint probability density functionSimulated signalsChain rulePhase dependenceEstimation methodHigh-orderDensity functionControl networkInaccurate estimationNonlinear dependenceDependenceStructural white matter abnormalities in Schizophrenia and associations with neurocognitive performance and symptom severity
Male A, Goudzwaard E, Nakahara S, Turner J, Calhoun V, Mueller B, Lim K, Bustillo J, Belger A, Voyvodic J, O'Leary D, Mathalon D, Ford J, Potkin S, Preda A, van Erp T. Structural white matter abnormalities in Schizophrenia and associations with neurocognitive performance and symptom severity. Psychiatry Research Neuroimaging 2024, 342: 111843. PMID: 38896909, DOI: 10.1016/j.pscychresns.2024.111843.Peer-Reviewed Original ResearchConceptsSymptom severityFractional anisotropyDiffusion tensor imagingNeurocognitive performanceCognitive performanceAssociated with speed of processingLeft inferior fronto-occipital fasciculusWM abnormalitiesAssociated with neurocognitive performancePathophysiology of schizophreniaCognitive performance deficitsInferior fronto-occipital fasciculusSpeed of processingStructural white matter abnormalitiesMean diffusivityAxial diffusivityFronto-occipital fasciculusHealthy controlsRadial diffusivityRegional WM abnormalitiesNegative symptomsPerformance deficitsWhite matterWhite matter abnormalitiesAssociated with speedA confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity
Hassanzadeh R, Abrol A, Pearlson G, Turner J, Calhoun V. A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity. PLOS ONE 2024, 19: e0293053. PMID: 38768123, PMCID: PMC11104643, DOI: 10.1371/journal.pone.0293053.Peer-Reviewed Original ResearchConceptsResting-state functional network connectivityFunctional network connectivityResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingAlzheimer's diseaseClassification of schizophreniaNetwork pairsPatients to healthy controlsSchizophrenia patientsNeurobiological mechanismsSZ patientsSubcortical networksCerebellum networkSchizophreniaRs-fMRIDisorder developmentMotor networkCompare patient groupsSubcortical domainSZ disorderHealthy controlsMagnetic resonance imagingDisordersNetwork connectivityFunctional abnormalitiesCross‐cohort replicable resting‐state functional connectivity in predicting symptoms and cognition of schizophrenia
Zhao C, Jiang R, Bustillo J, Kochunov P, Turner J, Liang C, Fu Z, Zhang D, Qi S, Calhoun V. Cross‐cohort replicable resting‐state functional connectivity in predicting symptoms and cognition of schizophrenia. Human Brain Mapping 2024, 45: e26694. PMID: 38727014, PMCID: PMC11083889, DOI: 10.1002/hbm.26694.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagingNegative symptomsFunctional connectivityCognitive impairmentPrediction of negative symptomsResting-state functional connectivityAssociated with reduced cognitive functionDebilitating mental illnessHealthy controlsPredicting functional connectivityEarly adulthood onsetPositive symptomsNeural underpinningsSchizophreniaCognitive functionSensorimotor networkPredicting symptomsMental illnessConnectivity patternsClinical interventionsMagnetic resonance imagingAdulthood onsetSymptomsImpairmentResonance imagingThe overlap across psychotic disorders: A functional network connectivity analysis
Dini H, Bruni L, Ramsøy T, Calhoun V, Sendi M. The overlap across psychotic disorders: A functional network connectivity analysis. International Journal Of Psychophysiology 2024, 201: 112354. PMID: 38670348, PMCID: PMC11163820, DOI: 10.1016/j.ijpsycho.2024.112354.Peer-Reviewed Original ResearchConceptsFunctional network connectivitySchizoaffective disorderPsychotic disordersHealthy controlsBipolar-Schizophrenia NetworkFunctional network connectivity analysisStatic functional network connectivityResting-state fMRINetwork connectivity analysisPatterns of activityPsychiatric disordersDisorder groupSchizophreniaConnectivity analysisHC groupBipolarConnectivity patternsDisordersPatient groupSymptom scoresGroup of patientsPANSSSchizoaffectiveFMRINetwork connectivityNeuroimaging alterations and relapse in early-stage psychosis
Mihaljevic M, Nagpal A, Etyemez S, Narita Z, Ross A, Schaub R, Cascella N, Coughlin J, Nestadt G, Nucifora F, Sedlak T, Calhoun V, Faria A, Yang K, Sawa A. Neuroimaging alterations and relapse in early-stage psychosis. Journal Of Psychiatry And Neuroscience 2024, 49: e135-e142. PMID: 38569725, PMCID: PMC10980532, DOI: 10.1503/jpn.230115.Peer-Reviewed Original ResearchMeSH KeywordsBrainChronic DiseaseHumansMagnetic Resonance ImagingNeuroimagingPsychotic DisordersRecurrenceSchizophreniaConceptsEarly-stage psychosisNeuroimaging alterationsResting-state functional MRI dataNo-relapse groupFunctional connectivity changesFunctional MRI dataHealthy controlsMagnetic resonance imagingRelapse groupPsychotic disordersFunctional connectivity estimatesBrain changesPsychotic eventsPsychosisConnectivity changesSymptom exacerbationConnectivity estimatesComparison correctionNo relapseLongitudinal studyThalamusNeuroimagingMRI dataClinical confounding factorsControl groupA whole-brain neuromark resting-state fMRI analysis of first-episode and early psychosis: Evidence of aberrant cortical-subcortical-cerebellar functional circuitry
Jensen K, Calhoun V, Fu Z, Yang K, Faria A, Ishizuka K, Sawa A, Andrés-Camazón P, Coffman B, Seebold D, Turner J, Salisbury D, Iraji A. A whole-brain neuromark resting-state fMRI analysis of first-episode and early psychosis: Evidence of aberrant cortical-subcortical-cerebellar functional circuitry. NeuroImage Clinical 2024, 41: 103584. PMID: 38422833, PMCID: PMC10944191, DOI: 10.1016/j.nicl.2024.103584.Peer-Reviewed Original ResearchMeSH KeywordsBrainBrain MappingCerebellumHumansMagnetic Resonance ImagingPsychotic DisordersSchizophreniaConceptsFunctional network connectivityFirst-episodeEarly psychosisAberrant functional network connectivityResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingCorrelates of psychosisResting-state fMRI analysisWhole-brain approachPsychiatric disordersPsychiatric illnessSubcortical regionsCerebellar regionsFMRI analysisPsychosisControl participantsCognitive functionRs-fMRICerebellar connectivityMulti-site datasetFunctional circuitryMagnetic resonance imagingCircuitryResonance imagingProminent pattern
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply