2025
An Explainable Unified Framework of Spatio-Temporal Coupling Learning With Application to Dynamic Brain Functional Connectivity Analysis
Gao B, Yu A, Qiao C, Calhoun V, Stephen J, Wilson T, Wang Y. An Explainable Unified Framework of Spatio-Temporal Coupling Learning With Application to Dynamic Brain Functional Connectivity Analysis. IEEE Transactions On Medical Imaging 2025, 44: 941-951. PMID: 39320999, DOI: 10.1109/tmi.2024.3467384.Peer-Reviewed Original ResearchSpatio-temporal informationDeep learning networkInter-node connectivitySpatio-temporal correlationMachine learning modelsNode representationsPoor explainabilityCoupling learningLearning frameworkDeep learningLearning networkLearning modelsExplainabilityTime series dataExperimental resultsCoupling associationFramework constructionLearningDynamic functional connectivityFrameworkBrain functional connectivity analysisBrain dynamic functional connectivityInformationConnectionNetwork
2024
Tensor dictionary-based heterogeneous transfer learning to study emotion-related gender differences in brain
Yang L, Qiao C, Kanamori T, Calhoun V, Stephen J, Wilson T, Wang Y. Tensor dictionary-based heterogeneous transfer learning to study emotion-related gender differences in brain. Neural Networks 2024, 183: 106974. PMID: 39657530, DOI: 10.1016/j.neunet.2024.106974.Peer-Reviewed Original ResearchFeature spaceClassification performanceHeterogeneous transfer learningTensor dictionary learningHeterogeneous knowledge sharingTransfer learning frameworkReduce training costsDictionary learningKnowledge sharing strategyHeterogeneous transferGender classificationTransfer learningLearning frameworkConnectivity dataHeterogeneous dataHeterogeneous knowledgeBrain activity dataPriori knowledgeTraining costsSharing strategyProblem of insufficient sample sizeKnowledge sharingEEG dataExperimental resultsDictionaryExplainable spatio-temporal graph evolution learning with applications to dynamic brain network analysis during development
Chen L, Qiao C, Ren K, Qu G, Calhoun V, Stephen J, Wilson T, Wang Y. Explainable spatio-temporal graph evolution learning with applications to dynamic brain network analysis during development. NeuroImage 2024, 298: 120771. PMID: 39111376, PMCID: PMC11533345, DOI: 10.1016/j.neuroimage.2024.120771.Peer-Reviewed Original ResearchConceptsSpatio-temporal dependenciesSpatial neighborhoodGraph learning methodsBrain network analysisNode representationsEvolution mechanisms of complex networksAdjacency informationDynamic brain network analysisModel explainabilityLanguage processingGraph evolutionEvolution learningLearning methodsLocal informationMechanism of complex networksDynamic evolutionModel dynamic interactionsDynamic functional connectivityNetwork componentsNested subgraphsLearning moduleExperimental resultsNetworkNetwork transitionsBrain development studiesScepter: Weakly Supervised Framework for Spatiotemporal Dense Prediction of 4D Dynamic Brain Networks
Kazemivash B, Suresh P, Liu J, Ye D, Calhoun V. Scepter: Weakly Supervised Framework for Spatiotemporal Dense Prediction of 4D Dynamic Brain Networks. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039527, DOI: 10.1109/embc53108.2024.10781876.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagingDynamic brain networksDense predictionBrain networksDynamic patterns of neural activityPatterns of neural activityBrain dynamicsSpatiotemporal brain dynamicsConsistent with previous findingsWeakly supervised frameworkComputer visionWeak supervisionModel architectureNetwork issuesSupervised frameworkFMRI dataBrain parcellation methodBrain functionNeural activityNeuroscience researchComplexity of brain functionNeural interactionsDeep-stackingExperimental resultsNetwork
2023
CfMRIPrep: A MATLAB toolbox for integrated preprocessing of complex-valued fMRI data
Li S, Ma M, Lin Q, Calhoun V. CfMRIPrep: A MATLAB toolbox for integrated preprocessing of complex-valued fMRI data. 2023, 00: 167-171. DOI: 10.1109/icist59754.2023.10367157.Peer-Reviewed Original ResearchComplex-valued fMRI dataPhase fMRI dataMATLAB toolboxFMRIB Software LibraryNew MATLAB toolboxMotion correctionSoftware libraryManual approachFMRI dataExperimental resultsHead motionPhase unwrappingSpatial normalizationToolboxDifferent subjectsPhase dataMagnitude dataPreprocessingDataProcessingUnwrappingLibraryNew Interpretable Patterns and Discriminative Features from Brain Functional Network Connectivity using Dictionary Learning
Ghayem F, Yang H, Kantar F, Kim S, Calhoun V, Adali T. New Interpretable Patterns and Discriminative Features from Brain Functional Network Connectivity using Dictionary Learning. 2023, 00: 1-5. DOI: 10.1109/icassp49357.2023.10096473.Peer-Reviewed Original ResearchDictionary learningIndependent component analysisLearned atomsDiscovery of hidden informationNetwork connectivityMulti-subject functional magnetic resonance imagingFunctional magnetic resonance imagingFunctional network connectivityDiscriminative featuresFeature vectorHidden informationEffective classificationSZ groupHealthy controlsResting-state fMRI dataExperimental resultsICA resultsDictionaryBrain functional network connectivityBrain networksMental disordersFMRI dataLearningRepresentationMental diseasesDeep Generative Transfer Learning Predicts Conversion To Alzheimer’S Disease From Neuroimaging Genomics Data
Dolci G, Rahaman M, Galazzo I, Cruciani F, Abrol A, Chen J, Fu Z, Duan K, Menegaz G, Calhoun V. Deep Generative Transfer Learning Predicts Conversion To Alzheimer’S Disease From Neuroimaging Genomics Data. 2023, 00: 1-5. DOI: 10.1109/icasspw59220.2023.10193683.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply