2025
Novel heterozygous SPI1c.538C>T p.(Leu180Phe) variant causes PU.1 haploinsufficiency leading to agammaglobulinemia
Daddali R, Kettunen K, Turunen T, Knox A, Laine P, Chowdhury I, Vänttinen M, Mamia N, Stiegler A, Boggon T, Kere J, Romberg N, Seppänen M, Varjosalo M, Martelius T, Grönholm J. Novel heterozygous SPI1c.538C>T p.(Leu180Phe) variant causes PU.1 haploinsufficiency leading to agammaglobulinemia. Clinical Immunology 2025, 277: 110503. PMID: 40294836, DOI: 10.1016/j.clim.2025.110503.Peer-Reviewed Original ResearchConceptsDendritic cell countHeterozygous loss-of-function variantsLoss-of-function variantsCentrosome-associated proteinsFamily transcription factorsEts family transcription factorGene expression patternsAssociated with B cell developmentHematopoietic cell fatePDC countsB cell developmentCell countDisrupts gene expression patternsB-cell countsCell fateCarrier sisterSevere bacterial infectionsTranscription factorsIsolated IgA deficiencyFinnish familiesExpression patternsIn vitro studiesIgA deficiencyVariable penetranceIndex patientCancer hotspot mutations rewire ERK2 specificity by selective exclusion of docking interactions
Robles J, Stiegler A, Boggon T, Turk B. Cancer hotspot mutations rewire ERK2 specificity by selective exclusion of docking interactions. Journal Of Biological Chemistry 2025, 301: 108348. PMID: 40015635, PMCID: PMC11982978, DOI: 10.1016/j.jbc.2025.108348.Peer-Reviewed Original ResearchShort linear motifsCancer hotspot mutationsLinear motifsERK substratesYeast two-hybrid libraryHotspot mutationsTwo-hybrid libraryCancer-associated mutantsDocking interactionsWild-type ERK2Cancer-associated mutationsDocking motifBinding sequenceKinase ERK2Co-crystal structureMutant formsERK2 mutantsDisordered regionsERK2MotifStructural rationalePeptide bindingMutationsWT kinasePeptide fragmentsThe C2 domain augments Ras GTPase-activating protein catalytic activity
Paul M, Chen D, Vish K, Lartey N, Hughes E, Freeman Z, Saunders T, Stiegler A, King P, Boggon T. The C2 domain augments Ras GTPase-activating protein catalytic activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2418433122. PMID: 39899710, PMCID: PMC11831179, DOI: 10.1073/pnas.2418433122.Peer-Reviewed Original ResearchConceptsGTPase-activating proteinC2 domainActivity of GTPase-activating proteinGTPase-activating protein domainProtein catalytic activityDomain in vitroAllosteric lobeRas GTPasesSequence conservationGTPase activityAlphaFold modelsRasGAPSignaling defectsRasMutationsCatalytic activityConstitutive disruptionCatalytic advantageGTPaseAlphaFoldDomainGenesSynGAPProteinSequence
2024
Regulation and signaling of the LIM domain kinases
Casanova‐Sepúlveda G, Boggon T. Regulation and signaling of the LIM domain kinases. BioEssays 2024, 47: e2400184. PMID: 39361252, PMCID: PMC11663136, DOI: 10.1002/bies.202400184.Peer-Reviewed Original ResearchLIM domain kinaseDownstream of Rho GTPasesCofilin/actin depolymerizing factorActin cytoskeleton regulationIntra-molecular mechanismFilament severingDepolymerizing factorRho GTPasesActin depolymerizationCytoskeleton regulationRegulation mechanismKinaseLIMProteinRegulationGTPaseLIMK2LIMK1ActinEnzymeHuman healthSignalDepolymerizationCascadeMechanism120 Treatable Acute Neuroinflammatory Disease Associated with Complement Factor I Loss-of-function in the Plain Community
Reid W, Carson V, Krieger P, Stiegler A, Boggon T, Sullivan K, van den Heuvel L, Romberg N. 120 Treatable Acute Neuroinflammatory Disease Associated with Complement Factor I Loss-of-function in the Plain Community. Clinical Immunology 2024, 262: 110062. DOI: 10.1016/j.clim.2024.110062.Peer-Reviewed Original ResearchDistinct functional constraints driving conservation of the cofilin N-terminal regulatory tail
Sexton J, Potchernikov T, Bibeau J, Casanova-Sepúlveda G, Cao W, Lou H, Boggon T, De La Cruz E, Turk B. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Nature Communications 2024, 15: 1426. PMID: 38365893, PMCID: PMC10873347, DOI: 10.1038/s41467-024-45878-9.Peer-Reviewed Original ResearchConceptsN-terminal regionActin bindingSequence requirementsLIM kinaseAnalysis of individual variantsInactivates cofilinS. cerevisiaeRegulatory tailFamily proteinsActin depolymerizationPhosphorylation sitesKinase recognitionSequence variantsInhibitory phosphorylationCofilinN-terminusIndividual variantsFunctional constraintsActinDisordered sequencesPhosphorylationSequenceBiochemical analysisSequence constraintsKinase
2023
Autoregulation of the LIM kinases by their PDZ domain
Casanova-Sepúlveda G, Sexton J, Turk B, Boggon T. Autoregulation of the LIM kinases by their PDZ domain. Nature Communications 2023, 14: 8441. PMID: 38114480, PMCID: PMC10730565, DOI: 10.1038/s41467-023-44148-4.Peer-Reviewed Original ResearchMutation of key signaling regulators of cerebrovascular development in vein of Galen malformations
Zhao S, Mekbib K, van der Ent M, Allington G, Prendergast A, Chau J, Smith H, Shohfi J, Ocken J, Duran D, Furey C, Hao L, Duy P, Reeves B, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu P, Wang Y, Mane S, Piwowarczyk P, Fehnel K, See A, Iskandar B, Aagaard-Kienitz B, Moyer Q, Dennis E, Kiziltug E, Kundishora A, DeSpenza T, Greenberg A, Kidanemariam S, Hale A, Johnston J, Jackson E, Storm P, Lang S, Butler W, Carter B, Chapman P, Stapleton C, Patel A, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay E, Zhao H, Moreno-De-Luca A, Proctor M, Smith E, Orbach D, Alper S, Nicoli S, Boggon T, Lifton R, Gunel M, King P, Jin S, Kahle K. Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Nature Communications 2023, 14: 7452. PMID: 37978175, PMCID: PMC10656524, DOI: 10.1038/s41467-023-43062-z.Peer-Reviewed Original ResearchConceptsEphrin receptor B4Galen malformationBrain arteriovenous malformationsP120 RasGAPTransmitted variantsArteriovenous malformationsDe novo variantsSingle-cell transcriptomesSignificant burdenCerebrovascular developmentIntegrative genomic analysisEndothelial cellsVenous networkAdditional probandsMalformationsNovo variantsMissense variantsGenomic analysisDevelopmental angiogenesisVascular developmentDamaging variantsVeinRasGAPIntegrated analysisPatientsCorrection: Rho family GTPase signaling through type II p21-activated kinases
Chetty A, Ha B, Boggon T. Correction: Rho family GTPase signaling through type II p21-activated kinases. Cellular And Molecular Life Sciences 2023, 80: 334. PMID: 37880444, PMCID: PMC11073300, DOI: 10.1007/s00018-023-04938-x.Peer-Reviewed Original ResearchStructure Determination of SH2–Phosphopeptide Complexes by X-Ray Crystallography: The Example of p120RasGAP
Stiegler A, Boggon T. Structure Determination of SH2–Phosphopeptide Complexes by X-Ray Crystallography: The Example of p120RasGAP. Methods In Molecular Biology 2023, 2705: 77-89. PMID: 37668970, PMCID: PMC11059313, DOI: 10.1007/978-1-0716-3393-9_5.Peer-Reviewed Original ResearchConceptsSrc homology 2SH2 domain bindsSH2 domainDomain bindsNew molecular-level insightsSH2 domain proteinsMolecular-level insightsX-ray crystallographyX-ray diffraction studiesDomain proteinsPartner proteinsHomology 2Three-dimensional structureMolecular detailsStructure determinationSuitable crystalsCanonical interactionsVapour-diffusion methodCareful structural analysisDrop vapor diffusion methodCrystallographic studiesCrystallography studiesSH2-phosphopeptide complexesDiffraction studiesP120RasGAPAuthor Correction: Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4)
Ha B, Yigit S, Natarajan N, Morse E, Calderwood D, Boggon T. Author Correction: Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4). Communications Biology 2023, 6: 794. PMID: 37524913, PMCID: PMC10390574, DOI: 10.1038/s42003-023-05176-4.Peer-Reviewed Original ResearchDiverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1
Vish K, Stiegler A, Boggon T. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. Journal Of Biological Chemistry 2023, 299: 105098. PMID: 37507023, PMCID: PMC10470053, DOI: 10.1016/j.jbc.2023.105098.Peer-Reviewed Original ResearchConceptsSH2 domainSpatial-temporal regulationDual SH2 domainsProper vascular developmentKey binding partnerProtein familySH2 interactionsBinding partnerHuman proteinsDistinct binding interactionsWeakened affinityVascular developmentRasGAPConformational differencesP190RhoGAPSmall-angle X-ray scatteringBindingBinding interactionsAffinity measurementsEphB4DomainGTPaseDok1X-ray scatteringProteinDe novo variants implicate chromatin modification, transcriptional regulation, and retinoic acid signaling in syndromic craniosynostosis
Timberlake A, McGee S, Allington G, Kiziltug E, Wolfe E, Stiegler A, Boggon T, Sanyoura M, Morrow M, Wenger T, Fernandes E, Caluseriu O, Persing J, Jin S, Lifton R, Kahle K, Kruszka P. De novo variants implicate chromatin modification, transcriptional regulation, and retinoic acid signaling in syndromic craniosynostosis. American Journal Of Human Genetics 2023, 110: 846-862. PMID: 37086723, PMCID: PMC10183468, DOI: 10.1016/j.ajhg.2023.03.017.Peer-Reviewed Original ResearchConceptsDamaging de novo variantsChromatin modificationsDe novo variantsCranial neural crest cellsGenome-wide significanceNeural crest cellsNovo variantsRetinoic acid receptor alphaExome sequence dataAcid receptor alphaTranscriptional regulationProband-parent triosGene transcriptionSequence dataCrest cellsOsteoblast differentiationCS phenotypeMendelian formsRecurrent gainsGenesRisk genesGenetic etiologyRetinoic acidReceptor alphaNeurodevelopmental disorders169 Exome Sequencing Implicates Endothelial Ras Signaling Network in Vein of Galen Aneurysmal Malformation
Mekbib K, Zhao S, Nelson-Williams C, Prendergast A, Zeng X, Rolle M, Shohfi J, Smith H, Ocken J, Moyer Q, Piwowarczyk P, Allington G, Dong W, van der Ent M, Chen D, Li B, Duran D, Mane S, Walcott B, Stapleton C, Aagaard-Kienitz B, Rodesch G, Jackson E, Smith E, Orbach D, Berenstein A, Bilguvar K, Zhao H, Erson-Omay Z, King P, Huttner A, Lifton R, Boggon T, Nicoli S, Jin S, Kahle K. 169 Exome Sequencing Implicates Endothelial Ras Signaling Network in Vein of Galen Aneurysmal Malformation. Neurosurgery 2023, 69: 22-22. DOI: 10.1227/neu.0000000000002375_169.Peer-Reviewed Original ResearchPathway analysisP120 Ras-GAPExome sequencingSevere vascular defectsGalen aneurysmal malformationReceptor tyrosine kinase activityTyrosine kinase activityDamaging de novoMutant embryosRas-GAPSignaling networksGenetic regulationRas activationAneurysmal malformationZebrafish modelDe novo mutationsKinase activityDisease genesAxon guidanceGenetic samplesWhole-exome sequencingHigh-output heart failureFunctional studiesCollected specimensSequencing
2022
Tandem engagement of phosphotyrosines by the dual SH2 domains of p120RasGAP
Stiegler A, Vish K, Boggon T. Tandem engagement of phosphotyrosines by the dual SH2 domains of p120RasGAP. Structure 2022, 30: 1603-1614.e5. PMID: 36417908, PMCID: PMC9722645, DOI: 10.1016/j.str.2022.10.009.Peer-Reviewed Original ResearchConceptsGTPase-activating proteinsSH2 domainSH2-SH3Src homology 2 domainDual SH2 domainsPhosphotyrosine residuesSH3 domainRho GTPasesPhosphotyrosine recognitionTarget proteinsSynergistic bindingPhosphotyrosineP120RasGAPConformational flexibilityProteinSelectivity mechanismAffinity measurementsDomainGTPasesClose proximityCassetteCrystal structureResiduesCompact arrangementBindingRho family GTPase signaling through type II p21-activated kinases
Chetty A, Ha B, Boggon T. Rho family GTPase signaling through type II p21-activated kinases. Cellular And Molecular Life Sciences 2022, 79: 598. PMID: 36401658, PMCID: PMC10105373, DOI: 10.1007/s00018-022-04618-2.Peer-Reviewed Original ResearchConceptsRho family small GTPasesP21-activated kinaseRho GTPasesSmall GTPasesPAK family membersRho family GTPaseSignal transduction pathwaysMechanism of regulationPAK familySignal transductionTransduction pathwaysGTPasesMolecular basisDownstream effectorsDomain recognitionPAKsCross talkKinasePAK groupDistinct structuresRegulationPAKFamily membersGTPaseTransductionMolecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4)
Ha B, Yigit S, Natarajan N, Morse E, Calderwood D, Boggon T. Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4). Communications Biology 2022, 5: 1257. PMID: 36385162, PMCID: PMC9669019, DOI: 10.1038/s42003-022-04157-3.Peer-Reviewed Original ResearchConceptsP21-activated kinase 4Integrin adhesion receptorsMolecular basisAdhesion receptorsIntegrin β5Potential cellular rolesIntegrin β tailsKinase 4Membrane-proximal halfSubstrate-binding grooveSubstrate-binding siteSite-directed mutagenesisCellular rolesPhosphoacceptor sitesΒ tailExtracellular ligandsCytoplasmic signalingCytoplasmic tailKinase domainMultiple kinasesIntegrin complexΒ5 integrinsΒ5TailMutagenesisDe novo mutations in the BMP signaling pathway in lambdoid craniosynostosis
Timberlake AT, Kiziltug E, Jin SC, Nelson-Williams C, Loring E, Allocco A, Marlier A, Banka S, Stuart H, Passos-Buenos M, Rosa R, Rogatto S, Tonne E, Stiegler A, Boggon T, Alperovich M, Steinbacher D, Staffenberg D, Flores R, Persing J, Kahle K, Lifton R. De novo mutations in the BMP signaling pathway in lambdoid craniosynostosis. Human Genetics 2022, 142: 21-32. PMID: 35997807, DOI: 10.1007/s00439-022-02477-2.Peer-Reviewed Original ResearchConceptsDe novo mutationsDamaging de novo mutationsSingle-cell RNA sequencing analysisTranscriptional co-repressorTarget sequence recognitionRNA sequencing analysisTranscription factor NfixNovo mutationsEnrichment of mutationsBMP receptorsCo-repressorParent-offspring triosTranscription factorsGenetic gainImplicating perturbationsOsteoblast precursorsPremature suture fusionSequencing analysisMolecular etiologySequence recognitionMissense mutationsMutationsExome sequencingGenetic etiologyOsteoprogenitor cells
2021
Integrated genomic analyses of cutaneous T-cell lymphomas reveal the molecular bases for disease heterogeneity
Park J, Daniels J, Wartewig T, Ringbloom KG, Martinez-Escala ME, Choi S, Thomas JJ, Doukas PG, Yang J, Snowden C, Law C, Lee Y, Lee K, Zhang Y, Conran C, Tegtmeyer K, Mo SH, Pease DR, Jothishankar B, Kwok PY, Abdulla FR, Pro B, Louissaint A, Boggon T, Sosman J, Guitart J, Rao D, Ruland J, Choi J. Integrated genomic analyses of cutaneous T-cell lymphomas reveal the molecular bases for disease heterogeneity. Blood 2021, 138: 1225-1236. PMID: 34115827, PMCID: PMC8499046, DOI: 10.1182/blood.2020009655.Peer-Reviewed Original ResearchConceptsPutative driver genesDriver genesCutaneous T-cell lymphomaDisease phenotypePutative tumor suppressorT-cell lymphomaMycosis fungoidesDiverse disease phenotypesPutative genetic causesSezary syndromeDNA/RNA sequencingGenomic analysisRNA sequencingMolecular basisTumor suppressorDisease stageStructural variantsGenetic relationshipsTranscriptional signatureGenesDisease heterogeneityFunctional assaysNovel insightsSkin-homing T cellsLeukemic disease
2020
PU.1 haploinsufficiency arrests pro-B cell development
Le Coz C, Nolan B, Pillarisetti P, Khanna C, Nguyen D, Boggon T, Nicholas S, Verbsky J, Hajjar J, Poon G, Chinn I, Marson A, Romberg N. PU.1 haploinsufficiency arrests pro-B cell development. Journal Of Allergy And Clinical Immunology 2020, 145: ab344. DOI: 10.1016/j.jaci.2019.12.085.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply