2025
Voltage-gated sodium channels in excitable cells as drug targets
Alsaloum M, Dib-Hajj S, Page D, Ruben P, Krainer A, Waxman S. Voltage-gated sodium channels in excitable cells as drug targets. Nature Reviews Drug Discovery 2025, 1-21. PMID: 39901031, DOI: 10.1038/s41573-024-01108-x.Peer-Reviewed Original ResearchSodium channelsChannel subtypesControl action potential firingDevelopment of drugsDensity of voltage-gated sodiumExcitable cellsAction potential firingSubtype-specific drugsSodium channel subtypesVoltage-gated sodium channelsExpressing high densitiesVoltage-gated sodiumCardiac myocytesNav1.1-Nav1.9Potential firingCardiac disordersAction potentialsMuscle cellsMolecular targetsDrugSubtypesDrug developmentCellsDrug targetsMyocytes
2000
Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000.
Waxman S, Dib-Hajj S, Cummins T, Black J. Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000. Brain Research 2000, 886: 5-14. PMID: 11119683, DOI: 10.1016/s0006-8993(00)02774-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSodium channel gene expressionSodium channel geneChannel gene expressionChannel genesGene expressionPost-transcriptional levelNormal nervous systemSodium channel expressionSodium channelsChannel expressionMolecular plasticityGenesDynamic expressionCell membraneHypothalamic magnocellular neurosecretory neuronsDifferent repertoiresMultiple sclerosisNervous systemTherapeutic opportunitiesSodium channel subtypesExpressionElectrogenic propertiesRegulationChannel subtypesDysregulation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply