2025
S-Nitrosylation of CRTC1 in Alzheimer’s disease impairs CREB-dependent gene expression induced by neuronal activity
Zhang X, Vlkolinsky R, Wu C, Dolatabadi N, Scott H, Prikhodko O, Zhang A, Blanco M, Lang N, Piña-Crespo J, Nakamura T, Roberto M, Lipton S. S-Nitrosylation of CRTC1 in Alzheimer’s disease impairs CREB-dependent gene expression induced by neuronal activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2418179122. PMID: 40014571, PMCID: PMC11892585, DOI: 10.1073/pnas.2418179122.Peer-Reviewed Original ResearchConceptsActivity-dependent gene expressionGene expressionAlzheimer's diseaseCREB-dependent gene expressionS-nitrosylationNitric oxide (NO)-related speciesTargets of S-nitrosylationNeuronal activity-dependent gene expressionPathogenesis of ADDecreased neurite lengthIncreased neuronal cell deathNeuronal cell deathSynaptic plasticityTranscriptional pathwaysCell deathCRISPR/Cas9 techniqueTranscription coactivator 1AD modelLong-term memory formationIncreased S-nitrosylationLong-term potentiationTherapeutic targetExpressionNeurite lengthCerebrocortical neurons
2024
Single‐Cell Patch‐Clamp/Proteomics of Human Alzheimer's Disease iPSC‐Derived Excitatory Neurons Versus Isogenic Wild‐Type Controls Suggests Novel Causation and Therapeutic Targets
Ghatak S, Diedrich J, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork N, Yates J, Lipton S. Single‐Cell Patch‐Clamp/Proteomics of Human Alzheimer's Disease iPSC‐Derived Excitatory Neurons Versus Isogenic Wild‐Type Controls Suggests Novel Causation and Therapeutic Targets. Advanced Science 2024, 11: e2400545. PMID: 38773714, PMCID: PMC11304297, DOI: 10.1002/advs.202400545.Peer-Reviewed Original ResearchAbundance of individual proteinsIsogenic wild-type controlsSingle-cell (scHuman AD brainsWild-type controlsSingle-cellAlzheimer's diseaseMulticellular organismsSingle-cell physiologyAD brainTherapeutic targetIndividual proteinsProteomic informationGenetic mutationsProteinProteomicsProtein expressionHiPSC-neuronsExcitatory neuronsElectrophysiological statusDisease statesPhysiologyElectrophysiological dataNeuronsNeuronal level
2022
Towards development of disease-modifying therapy for Alzheimer's disease using redox chemical biology pathways
Lipton S. Towards development of disease-modifying therapy for Alzheimer's disease using redox chemical biology pathways. Current Opinion In Pharmacology 2022, 66: 102267. PMID: 35870288, PMCID: PMC9509422, DOI: 10.1016/j.coph.2022.102267.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseDisease-modifying therapiesPotential therapeutic efficacySevere side effectsPotential therapeutic targetCerebral organoid modelTranscription factor Nrf2Absence of diseaseNMDA typeGlutamate receptorsDisease processSide effectsTherapeutic targetTransgenic miceTherapeutic efficacyNeurodegenerative disordersNormal tissuesDiseaseFactor Nrf2Organoid modelsProtein S-nitrosylationS-nitrosylationProtein Keap1TherapyNrf2
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply