2025
diAcCA, a Pro-Drug for Carnosic Acid That Activates the Nrf2 Transcriptional Pathway, Shows Efficacy in the 5xFAD Transgenic Mouse Model of Alzheimer’s Disease
Banerjee P, Wang Y, Carnevale L, Patel P, Raspur C, Tran N, Zhang X, Natarajan R, Roberts A, Baran P, Lipton S. diAcCA, a Pro-Drug for Carnosic Acid That Activates the Nrf2 Transcriptional Pathway, Shows Efficacy in the 5xFAD Transgenic Mouse Model of Alzheimer’s Disease. Antioxidants 2025, 14: 293. PMCID: PMC11939361, DOI: 10.3390/antiox14030293.Peer-Reviewed Original ResearchAlzheimer's diseaseNrf2 transcriptional pathwayTranscriptional pathwaysAmyloid plaque formationMouse model of Alzheimer's diseaseTransgenic mouse model of Alzheimer's diseaseModel of Alzheimer's diseaseAD transgenic miceCorrelated to cognitive declineNeuritic aggregatesTau tanglesAmyloid plaquesPhospho-tauCarnosic acidSynapse lossHuman ADPurified CATransgenic mouse modelPhenolic diterpenesAmyloidMicroglial inflammationPathwayPlaque formationTransgenic miceNrf2
2024
Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer’s and related dementias
Oh C, Nakamura T, Zhang X, Lipton S. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer’s and related dementias. Neuron 2024, 112: 3823-3850. PMID: 39515322, PMCID: PMC11624102, DOI: 10.1016/j.neuron.2024.10.013.Peer-Reviewed Original ResearchProtein S-nitrosylationS-nitrosylationEndoplasmic reticulumRedox-mediated posttranslational modificationDiseases associated with protein aggregationProtein aggregationSynapse lossModulating protein activityNetwork of proteinsMultiple neurodegenerative disordersUbiquitin-proteasome systemS-nitrosylation reactionPosttranslational modificationsMitochondrial metabolismExcessive nitrosative stressEnzymatic machineryRedox regulationProtein activityProtein networkDysfunction pathwayMicroglial phagocytosisSingle proteinsBioenergetic compromiseReview recent findingsProteinMetabolic Bypass Rescues Aberrant S‐nitrosylation‐Induced TCA Cycle Inhibition and Synapse Loss in Alzheimer's Disease Human Neurons
Andreyev A, Yang H, Doulias P, Dolatabadi N, Zhang X, Luevanos M, Blanco M, Baal C, Putra I, Nakamura T, Ischiropoulos H, Tannenbaum S, Lipton S. Metabolic Bypass Rescues Aberrant S‐nitrosylation‐Induced TCA Cycle Inhibition and Synapse Loss in Alzheimer's Disease Human Neurons. Advanced Science 2024, 11: 2306469. PMID: 38235614, PMCID: PMC10966553, DOI: 10.1002/advs.202306469.Peer-Reviewed Original ResearchTricarboxylic acidOxidative phosphorylationAlzheimer's diseaseSynapse lossSynaptic lossPathological correlate of cognitive declineHuman AD brainsTCA cycle inhibitionMetabolic flux experimentsAberrant S-nitrosylationPostmortem human AD brainIsogenic wild-typeAssociated with synaptic lossDysfunctional mitochondrial metabolismMitochondrial bioenergetic functionProtein S-nitrosylationModel of ADMitochondrial energy metabolismCell-permeable derivativeCorrelate of cognitive declineAD brainMitochondrial metabolismEnzyme functionHiPSC-based modelsBioenergetic function“Dark” Pathways of Protein Transnitrosylation Injure Synapses in Alzheimer’s Disease: Mechanism and Potential Treatment
LIPTON S. “Dark” Pathways of Protein Transnitrosylation Injure Synapses in Alzheimer’s Disease: Mechanism and Potential Treatment. 2024, pl. DOI: 10.14869/toxpt.51.1.0_pl.Peer-Reviewed Original ResearchAlzheimer's diseaseDisruption of protein functionUbiquitin-protein hydrolaseS-nitrosylationS-nitrosylation reactionLoss of synapsesCorrelated to cognitive declineGuanosine triphosphataseMitochondrial fragmentationAD brainProtein functionAmyloid-betaAggregated proteinsProtein hydrolaseSynapse lossSynaptic lossBioenergetic compromiseSynaptic damageTransnitrosylation reactionsProteinUCH-L1Environmental factorsEnzymeAlzheimerCascade
2023
Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer’s disease: Mechanistic insights and potential therapies
Ghatak S, Nakamura T, Lipton S. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer’s disease: Mechanistic insights and potential therapies. Frontiers In Neural Circuits 2023, 17: 1099467. PMID: 36817649, PMCID: PMC9932935, DOI: 10.3389/fncir.2023.1099467.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseSynaptic damageReactive oxygen speciesS-nitrosylation contributesNeuronal hyperactivitySynaptic lossSynapse lossSynaptic degenerationCommon causePotential therapyAD modelCognitive declineHyperexcitabilityDiseaseSingle neuronsActivity contributesMolecular changesProtein S-nitrosylationDeleterious effectsNeural network functionS-nitrosylationOxygen speciesEarly signaturesPatientsTherapy
2022
Hidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer's disease
Lipton S. Hidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer's disease. Free Radical Biology And Medicine 2022, 193: 171-176. PMID: 36243209, PMCID: PMC9875813, DOI: 10.1016/j.freeradbiomed.2022.10.272.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseParkinson's diseaseNitric oxideSoluble guanylate cyclaseFormation of peroxynitriteSynapse lossNeurocognitive disordersNeurological disordersDiseaseGuanylate cyclaseNeurodevelopmental disordersDisordersProtein S-nitrosylationSuperoxide anionTyrosine nitrationS-nitrosylationHIVS-nitrosationPathogenesisDementia
2021
α-Synuclein Oligomers Induce Glutamate Release from Astrocytes and Excessive Extrasynaptic NMDAR Activity in Neurons, Thus Contributing to Synapse Loss
Trudler D, Sanz-Blasco S, Eisele Y, Ghatak S, Bodhinathan K, Akhtar M, Lynch W, Piña-Crespo J, Talantova M, Kelly J, Lipton S. α-Synuclein Oligomers Induce Glutamate Release from Astrocytes and Excessive Extrasynaptic NMDAR Activity in Neurons, Thus Contributing to Synapse Loss. Journal Of Neuroscience 2021, 41: 2264-2273. PMID: 33483428, PMCID: PMC8018774, DOI: 10.1523/jneurosci.1871-20.2020.Peer-Reviewed Original ResearchConceptsLewy body dementiaExtrasynaptic NMDA receptorsSynaptic damageParkinson's diseaseNeuronal lossLewy bodiesNMDAR activityDisease progressionΑSyn oligomersPotential disease-modifying interventionsNeurodegenerative diseasesΑ-synucleinExtrasynaptic NMDAR activitySynaptic NMDAR activityDisease-modifying interventionsPatch-clamp recordingsMajor neuropathological characteristicsSynaptic lossAstrocytic glutamateGlutamate releaseSynapse lossSpine lossExtrasynaptic NMDARsFemale miceHippocampal slices
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply