2025
Increasing angular sampling for dedicated cardiac SPECT scanner: Implementation with Deep Learning and Validation with human data
Xie H, Alashi A, Thorn S, Chen X, Zhou B, Sinusas A, Liu C. Increasing angular sampling for dedicated cardiac SPECT scanner: Implementation with Deep Learning and Validation with human data. Journal Of Nuclear Cardiology 2025, 102168. PMID: 39986346, DOI: 10.1016/j.nuclcard.2025.102168.Peer-Reviewed Original ResearchLower Extremity Flow Quantification Using Dynamic 82Rb PET: a Preclinical Investigation
Guo L, Thorn S, de Rubio Cruz P, Liu Z, Gallezot J, Liu Q, Moulton E, Carson R, Sinusas A, Liu C. Lower Extremity Flow Quantification Using Dynamic 82Rb PET: a Preclinical Investigation. IEEE Transactions On Radiation And Plasma Medical Sciences 2025, PP: 1-1. DOI: 10.1109/trpms.2025.3542729.Peer-Reviewed Original Research
2023
Transformer-Based Dual-Domain Network for Few-View Dedicated Cardiac SPECT Image Reconstructions
Xie H, Zhou B, Chen X, Guo X, Thorn S, Liu Y, Wang G, Sinusas A, Liu C. Transformer-Based Dual-Domain Network for Few-View Dedicated Cardiac SPECT Image Reconstructions. Lecture Notes In Computer Science 2023, 14229: 163-172. DOI: 10.1007/978-3-031-43999-5_16.Peer-Reviewed Original ResearchDual-domain networkSPECT image reconstructionImage reconstructionDeep learning methodsPrevious baseline methodsCardiac SPECT imagesHigh-quality imagesReconstruction networkIterative reconstruction processView reconstructionBaseline methodsReconstruction outputLearning methodsClinical softwareReconstruction processImaging problemsProjection dataImage qualityNetworkImagesStationary dataSPECT scannerDiagnosis of CVDLimited amountSoftware
2022
Quantification of intramyocardial blood volume using 99mTc-RBC SPECT/CT: a pilot human study
Yousefi H, Shi L, Soufer A, Tsatkin V, Bruni W, Avendano R, Greco K, McMahon D, Thorn S, Miller E, Sinusas A, Liu C. Quantification of intramyocardial blood volume using 99mTc-RBC SPECT/CT: a pilot human study. Journal Of Nuclear Cardiology 2022, 30: 292-297. PMID: 36319815, DOI: 10.1007/s12350-022-03123-0.Peer-Reviewed Original ResearchDeep-Learning-Based Few-Angle Cardiac SPECT Reconstruction Using Transformer
Xie H, Thorn S, Liu Y, Lee S, Liu Z, Wang G, Sinusas A, Liu C. Deep-Learning-Based Few-Angle Cardiac SPECT Reconstruction Using Transformer. IEEE Transactions On Radiation And Plasma Medical Sciences 2022, 7: 33-40. PMID: 37397179, PMCID: PMC10312390, DOI: 10.1109/trpms.2022.3187595.Peer-Reviewed Original ResearchConvolutional neural networkLimitations of CNNMedical imaging tasksDeep U-NetImage reconstruction taskCardiac SPECT imagesComputer visionVision TransformerConvolutional kernelsTransformer networkAttention blockInput imageU-NetNeural networkMemory burdenImage sizeInductive biasInformative featuresImage volumesImaging tasksTesting dataNetworkWhole 3D volumeNetwork structureCardiac single photon emissionIncreasing angular sampling through deep learning for stationary cardiac SPECT image reconstruction
Xie H, Thorn S, Chen X, Zhou B, Liu H, Liu Z, Lee S, Wang G, Liu YH, Sinusas AJ, Liu C. Increasing angular sampling through deep learning for stationary cardiac SPECT image reconstruction. Journal Of Nuclear Cardiology 2022, 30: 86-100. PMID: 35508796, DOI: 10.1007/s12350-022-02972-z.Peer-Reviewed Original ResearchConceptsDeep learningReconstruction qualityImage reconstructionDeep learning methodsDeep neural networksDeep learning resultsImage qualityNetwork trainingSPECT image reconstructionNeural networkLearning methodsHigh image resolutionImage volumesClinical softwareImage metricsImage resolutionReconstruction resultsImproved image qualityTesting dataLearning resultsNetwork resultsPhysical phantomStationary imagingDifferent subjectsLearning
2019
Direct List Mode Parametric Reconstruction for Dynamic Cardiac SPECT
Shi L, Lu Y, Wu J, Gallezot JD, Boutagy N, Thorn S, Sinusas AJ, Carson RE, Liu C. Direct List Mode Parametric Reconstruction for Dynamic Cardiac SPECT. IEEE Transactions On Medical Imaging 2019, 39: 119-128. PMID: 31180845, PMCID: PMC7030971, DOI: 10.1109/tmi.2019.2921969.Peer-Reviewed Original ResearchConceptsAppropriate kinetic modelConventional indirect methodImage reconstruction algorithmKinetic modelHigh noise levelsLow count levelsVivo canine studyIndirect methodImage noiseNoise levelParametric reconstructionNoiseReconstruction algorithmFrame imagePatient radiation dose reductionMethodDirect methodLower image noise
2018
Simplified Quantification and Acquisition Protocol for 123I-MIBG Dynamic SPECT
Wu J, Gallezot JD, Lu Y, Ye Q, Liu H, Esserman DA, Kyriakides TC, Thorn S, Zonouz TH, Liu YH, Lampert R, Sinusas AJ, Carson RE, Liu C. Simplified Quantification and Acquisition Protocol for 123I-MIBG Dynamic SPECT. Journal Of Nuclear Medicine 2018, 59: 1574-1580. PMID: 29476001, DOI: 10.2967/jnumed.117.202143.Peer-Reviewed Original Research
2016
Quantitative Analysis of Dynamic 123I-mIBG SPECT Imaging Data in Healthy Humans with a Population-Based Metabolite Correction Method
Wu J, Lin SF, Gallezot JD, Chan C, Prasad R, Thorn S, Stacy MR, Huang Y, Zonouz TH, Liu YH, Lampert RJ, Carson RE, Sinusas AJ, Liu C. Quantitative Analysis of Dynamic 123I-mIBG SPECT Imaging Data in Healthy Humans with a Population-Based Metabolite Correction Method. Journal Of Nuclear Medicine 2016, 57: 1226-1232. PMID: 27081169, DOI: 10.2967/jnumed.115.171710.Peer-Reviewed Original Research3-IodobenzylguanidineAdultAgedAlgorithmsArtifactsComputer SimulationFemaleHeartHumansImage EnhancementImage Interpretation, Computer-AssistedMaleMiddle AgedModels, CardiovascularModels, StatisticalMyocardiumRadiopharmaceuticalsReproducibility of ResultsSensitivity and SpecificityTissue DistributionTomography, Emission-Computed, Single-Photon
2015
Scatter and crosstalk corrections for 99mTc/123I dual‐radionuclide imaging using a CZT SPECT system with pinhole collimators
Fan P, Hutton BF, Holstensson M, Ljungberg M, Pretorius P, Prasad R, Ma T, Liu Y, Wang S, Thorn SL, Stacy MR, Sinusas AJ, Liu C. Scatter and crosstalk corrections for 99mTc/123I dual‐radionuclide imaging using a CZT SPECT system with pinhole collimators. Medical Physics 2015, 42: 6895-6911. PMID: 26632046, DOI: 10.1118/1.4934830.Peer-Reviewed Original ResearchConceptsDual-radionuclide imagingCrosstalk correction methodTEW methodLine source experimentDefect contrastSource experimentsMonte Carlo simulationsIncomplete charge collectionCadmium zinc telluride detectorsLow-energy tailImaging systemCarlo simulationsPinhole collimatorCardiac SPECT systemEnergy tailDetector effectsEnergy spectrumPoint source measurementsSPECT systemCZT detectorsTriple energy window (TEW) methodScatter modelDedicated cardiac SPECT systemsCorrection methodCrosstalk correction
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply