2018
aPKCζ-dependent Repression of Yap is Necessary for Functional Restoration of Irradiated Salivary Glands with IGF-1
Chibly AM, Wong WY, Pier M, Cheng H, Mu Y, Chen J, Ghosh S, Limesand KH. aPKCζ-dependent Repression of Yap is Necessary for Functional Restoration of Irradiated Salivary Glands with IGF-1. Scientific Reports 2018, 8: 6347. PMID: 29679075, PMCID: PMC5910385, DOI: 10.1038/s41598-018-24678-4.Peer-Reviewed Original Research
2017
Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage
Chang CF, Goods BA, Askenase MH, Hammond MD, Renfroe SC, Steinschneider AF, Landreneau MJ, Ai Y, Beatty HE, da Costa LHA, Mack M, Sheth KN, Greer DM, Huttner A, Coman D, Hyder F, Ghosh S, Rothlin CV, Love JC, Sansing LH. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. Journal Of Clinical Investigation 2017, 128: 607-624. PMID: 29251628, PMCID: PMC5785262, DOI: 10.1172/jci95612.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisAxl Receptor Tyrosine KinaseBrain InjuriesCerebral HemorrhageC-Mer Tyrosine KinaseErythrocytesHematomaHumansImmunity, InnateInflammationMacrophagesMaleMiceMice, Inbred C57BLMice, TransgenicPhagocytosisPhenotypeProto-Oncogene ProteinsReceptor Protein-Tyrosine KinasesSolubilityTreatment OutcomeConceptsMonocyte-derived macrophagesIntracerebral hemorrhageEryptotic erythrocytesNeurological recoveryHematoma clearanceExperimental intracerebral hemorrhageReceptor tyrosine kinase AXLHuman monocyte-derived macrophagesTyrosine kinase AXLICH onsetFunctional outcomeBrain injuryTissue injurySoluble AxlDynamic phenotypic changesAlternative activationPhenotypic changesMacrophage phenotypeIron depositionMurine brainMacrophage responseRestorative functionEfferocytosisMacrophagesEngulfment of erythrocytes
2016
The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity
Chan PY, Carrera Silva EA, De Kouchkovsky D, Joannas LD, Hao L, Hu D, Huntsman S, Eng C, Licona-Limón P, Weinstein JS, Herbert DR, Craft JE, Flavell RA, Repetto S, Correale J, Burchard EG, Torgerson DG, Ghosh S, Rothlin CV. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science 2016, 352: 99-103. PMID: 27034374, PMCID: PMC4935984, DOI: 10.1126/science.aaf1358.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAnimalsAsthmaBlood ProteinsDendritic CellsDisease Models, AnimalGene Knockout TechniquesHost-Parasite InteractionsHumansImmunity, InnateInterleukin-4MiceMice, Inbred C57BLMice, KnockoutNippostrongylusProtein SPyroglyphidaeReceptor Protein-Tyrosine KinasesStrongylida InfectionsT-LymphocytesConceptsType 2 immunityType 2 responsesType 2 cytokinesHuman dendritic cellsInnate immune cellsDendritic cellsAllergic diseasesImmune cellsT cellsAdaptive immunityInterleukin-4Host responseFunctional neutralizationGenetic ablationReceptor tyrosine kinasesImmunityProtective functionTyro3Tyrosine kinaseNegative regulatorPROS1CellsResponseCytokinesDisease
2013
Contrasting effects of chronic, systemic treatment with mTOR inhibitors rapamycin and metformin on adult neural progenitors in mice
Kusne Y, Goldberg EL, Parker SS, Hapak SM, Maskaykina IY, Chew WM, Limesand KH, Brooks HL, Price TJ, Sanai N, Nikolich-Zugich J, Ghosh S. Contrasting effects of chronic, systemic treatment with mTOR inhibitors rapamycin and metformin on adult neural progenitors in mice. GeroScience 2013, 36: 199-212. PMID: 23949159, PMCID: PMC3889877, DOI: 10.1007/s11357-013-9572-5.Peer-Reviewed Original ResearchConceptsSystemic administrationMTOR inhibitorsImproved health spanAdult-born neuronsHealth spanEffects of chronicNeural progenitorsAdult neural stem cellsMTOR inhibitor rapamycinInhibition of mTORPotential adverse effectsAdult neural progenitorsNeural stem cellsSystemic treatmentDendate gyrusMouse hippocampusSubventricular regionOrgan functionMetforminBehavioral healthInhibitor rapamycinAdverse effectsPharmacological inhibitorsMTORRapamycinmTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK
Melemedjian OK, Khoutorsky A, Sorge RE, Yan J, Asiedu MN, Valdez A, Ghosh S, Dussor G, Mogil JS, Sonenberg N, Price TJ. mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain 2013, 154: 1080-1091. PMID: 23607966, PMCID: PMC3742001, DOI: 10.1016/j.pain.2013.03.021.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDown-RegulationEnzyme ActivationFeedback, PhysiologicalInsulin Receptor Substrate ProteinsMaleMAP Kinase Signaling SystemMechanistic Target of Rapamycin Complex 1MiceMice, Inbred C57BLMice, Inbred ICRMultiprotein ComplexesPainRatsRats, Sprague-DawleySensory Receptor CellsSirolimusTOR Serine-Threonine KinasesConceptsSpontaneous painMechanical hypersensitivitySensory neuronsDevelopment of painPotential treatment optionSensory neuron sensitizationRapamycin complex 1 (mTORC1) inhibitorsExtracellular signal-regulated kinase (ERK) pathwaySignal-regulated kinase pathwaySuppression of S6K1Chronic treatmentPain conditionsPain therapeuticsTransplant rejectionAdenosine monophosphate-activated protein kinase (AMPK) activatorProtein kinase activatorsTreatment optionsAntidiabetic drugsPainSensory hypersensitivityMTOR pathwayNegative feedback loopCertain cancersMammalian targetMTORC1 inhibition