2021
“One-Two Punch”: Synergistic ß-Lactam Combinations for Mycobacterium abscessus and Target Redundancy in the Inhibition of Peptidoglycan Synthesis Enzymes
Nguyen D, Dousa K, Kurz S, Brown S, Drusano G, Holland S, Kreiswirth B, Boom W, Daley C, Bonomo R. “One-Two Punch”: Synergistic ß-Lactam Combinations for Mycobacterium abscessus and Target Redundancy in the Inhibition of Peptidoglycan Synthesis Enzymes. Clinical Infectious Diseases 2021, 73: 1532-1536. PMID: 34113990, PMCID: PMC8677594, DOI: 10.1093/cid/ciab535.Peer-Reviewed Original ResearchConceptsPeptidoglycan synthesis enzymesMinimum inhibitory concentration of clinical isolatesB-lactamCombination of imipenemSynthesis enzymesSynergistic in vitroClinical isolatesMinimum inhibitory concentrationMycobacterium abscessusClinical trialsMycobacterial infectionAbscessusEnzymeCeftarolineImipenem
2020
1572. Combination Cefuroxime and Sulopenem is active in vitro against Mycobacterium abscessus
Dousa K, Nguyen D, Kurz S, Taracila M, Bethel C, Bonomo R. 1572. Combination Cefuroxime and Sulopenem is active in vitro against Mycobacterium abscessus. Open Forum Infectious Diseases 2020, 7: s785-s785. PMCID: PMC7778327, DOI: 10.1093/ofid/ofaa439.1752.Peer-Reviewed Original ResearchQualified Infectious Disease ProductFood and Drug AdministrationMab infectionClinical isolatesColony-forming unitsCell wall synthesis proteinsMycobacterium abscessusB-lactamOral step-down therapyNontuberculous mycobacteriaStep-down therapyUS Food and Drug AdministrationB-lactam antibioticsVisible bacterial growthMiddlebrook 7H9 brothCharacterized isolatesMIC distributionSynthesis proteinsClinical strainsOral formulationMAB isolatesClinical trialsActivity in vitroDrug AdministrationBacterial growth
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply