2025
Generative artificial intelligence and machine learning methods to screen social media content.
Sharp K, Ouellette R, Singh R, DeVito E, Kamdar N, de la Noval A, Murthy D, Kong G. Generative artificial intelligence and machine learning methods to screen social media content. PeerJ Computer Science 2025, 11: e2710. PMID: 40134877, PMCID: PMC11935761, DOI: 10.7717/peerj-cs.2710.Peer-Reviewed Original ResearchSocial media contentMachine learning methodsGenerative artificial intelligenceHuman reviewScreen contentLearning methodsArtificial intelligenceHuman codersMedia contentMachine learning techniquesSocial media dataObject detectionOpenCV libraryCloud VisionText dataMetadata entriesExtract framesChatGPTLearning techniquesIrrelevant contentSocial media platformsSocial media researchIrrelevant resultsMedia dataRelevant content
2024
Identification and Classification of Images in e-Cigarette-Related Content on TikTok: Unsupervised Machine Learning Image Clustering Approach
Lee J, Murthy D, Ouellette R, Anand T, Kong G. Identification and Classification of Images in e-Cigarette-Related Content on TikTok: Unsupervised Machine Learning Image Clustering Approach. Substance Use & Misuse 2024, 60: 677-683. PMID: 40019898, PMCID: PMC11871408, DOI: 10.1080/10826084.2024.2447415.Peer-Reviewed Original ResearchConceptsImage clustering approachImage clustering modelsState-of-the-artE-cigarette-related contentMachine learning approachSocial media dataImage clusteringAnalysis of visual dataSocial media platformsVisual dataLearning approachMedia dataClustering approachMedia platformsImage-based social media platformsQualitative evaluationSocial mediaImage-based analysisImagesTikTokCluster modelUnsupervisedVideoClustersCloudAdolescents and Young Adults Use of Social Media and Following of e-Cigarette Influencers
Lee J, Ouellette R, Morean M, Kong G. Adolescents and Young Adults Use of Social Media and Following of e-Cigarette Influencers. Substance Use & Misuse 2024, 59: 1424-1430. PMID: 38755112, DOI: 10.1080/10826084.2024.2352620.Peer-Reviewed Original ResearchSocial media platformsE-cigarettesMedia platformsPast 30-day e-cigarette useE-cigarette use frequencyYoung adultsSocial media useSocial media influencersSocial media platformE-cigarette useFrequent useMedia useMedia influenceMedia platformSocial MediaAssociated with more frequent useTikTokTobacco regulatory policiesYoung adults' useBinomial logistic regressionPromote e-cigarettesUS National SurveyLogistic regressionAYAAdult useUsing Computer Vision to Detect E-cigarette Content in TikTok Videos
Murthy D, Ouellette R, Anand T, Radhakrishnan S, Mohan N, Lee J, Kong G. Using Computer Vision to Detect E-cigarette Content in TikTok Videos. Nicotine & Tobacco Research 2024, 26: s36-s42. PMID: 38366342, PMCID: PMC10873490, DOI: 10.1093/ntr/ntad184.Peer-Reviewed Original ResearchConceptsE-cigarette-related contentSocial media platformsVideo-based social media platformsMedia platformsComputer vision modelsAverage F1 scoreComputer vision methodsComputer vision techniquesMachine learning modelsText-based approachComputer visionObject detectionAnnotated imagesVisual contentSocial mediaF1 scoreVision techniquesRecall valuesVision methodsVision modelsSocial media platformLearning modelsVideoComputerTikTok posts
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply