2023
SLC26A6 Plays a Major Role in Release of Soluble Oxalate from Macrophages Following Internalization of Calcium Oxalate Crystals
Najenson A, Wagner T, Bachmann S, Thomson R, Knauf F, Aronson P. SLC26A6 Plays a Major Role in Release of Soluble Oxalate from Macrophages Following Internalization of Calcium Oxalate Crystals. Journal Of The American Society Of Nephrology 2023, 34: 490-490. DOI: 10.1681/asn.20233411s1490b.Peer-Reviewed Original Research
2021
A New Physiological Model to Study Regulation of SLC26A6-Mediated Oxalate Transport in Mouse and Human Intestinal Tissue
Schorr M, Holthaus D, Vallone V, Thomson R, Stachelscheid H, Aronson P, Knauf F. A New Physiological Model to Study Regulation of SLC26A6-Mediated Oxalate Transport in Mouse and Human Intestinal Tissue. Journal Of The American Society Of Nephrology 2021, 32: 202-203. DOI: 10.1681/asn.20213210s1202d.Peer-Reviewed Original Research
2016
Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion
Knauf F, Thomson RB, Heneghan JF, Jiang Z, Adebamiro A, Thomson CL, Barone C, Asplin JR, Egan ME, Alper SL, Aronson PS. Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion. Journal Of The American Society Of Nephrology 2016, 28: 242-249. PMID: 27313231, PMCID: PMC5198290, DOI: 10.1681/asn.2016030279.Peer-Reviewed Original ResearchConceptsIntestinal oxalate secretionWild-type miceCystic fibrosisIntestinal tissueOxalate secretionIncidence of hyperoxaluriaCalcium oxalate stone formationNet intestinal absorptionOxalate stone formationCoexpression of CFTRIntestinal transport processesWestern blot analysisOxalate absorptionMouse modelIntestinal absorptionGlucose absorptionUssing chambersStone formationFibrosisMiceSecretionReduced expressionCystic fibrosis transmembrane conductance regulator (CFTR) geneHyperoxaluriaPatients