2024
Proof-of-concept studies with a computationally designed Mpro inhibitor as a synergistic combination regimen alternative to Paxlovid
Papini C, Ullah I, Ranjan A, Zhang S, Wu Q, Spasov K, Zhang C, Mothes W, Crawford J, Lindenbach B, Uchil P, Kumar P, Jorgensen W, Anderson K. Proof-of-concept studies with a computationally designed Mpro inhibitor as a synergistic combination regimen alternative to Paxlovid. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2320713121. PMID: 38621119, PMCID: PMC11046628, DOI: 10.1073/pnas.2320713121.Peer-Reviewed Original ResearchConceptsDirect-acting antiviralsSARS-CoV-2Lack of off-target effectsIn vitro pharmacological profileTreatment of patientsDevelopment of severe symptomsPharmacological propertiesDrug-drug interactionsSARS-CoV-2 infectionProof-of-concept studySARS-CoV-2 M<sup>pro</sup>.Combination regimenImmunocompromised patientsLead compoundsSARS-CoV-2 main proteaseOral doseActive drugTreat infectionsPharmacological profileSARS-CoV-2 MPotential preclinical candidateOff-target effectsPatientsComplete recoveryCapsule formulation
2023
PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection
Xu D, Jiang W, Wu L, Gaudet R, Park E, Su M, Cheppali S, Cheemarla N, Kumar P, Uchil P, Grover J, Foxman E, Brown C, Stansfeld P, Bewersdorf J, Mothes W, Karatekin E, Wilen C, MacMicking J. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023, 619: 819-827. PMID: 37438530, PMCID: PMC10371867, DOI: 10.1038/s41586-023-06322-y.Peer-Reviewed Original ResearchConceptsC-terminal β-barrel domainSpike-mediated fusionCell-autonomous defenseLarge-scale exome sequencingΒ-barrel domainGenome-wide CRISPRSARS-CoV-2 infectionHost cell cytosolScramblase activityPhospholipid scramblaseLive SARS-CoV-2 infectionHuman lung epitheliumPLSCR1SARS-CoV-2 USASingle-molecule switchingSARS-CoV-2 variantsExome sequencingHuman populationRestriction factorsViral RNANew SARS-CoV-2 variantsSARS-CoV-2Robust activityLung epitheliumDefense factors
2022
The Fc-effector function of COVID-19 convalescent plasma contributes to SARS-CoV-2 treatment efficacy in mice
Ullah I, Beaudoin-Bussières G, Symmes K, Cloutier M, Ducas E, Tauzin A, Laumaea A, Grunst M, Dionne K, Richard J, Bégin P, Mothes W, Kumar P, Bazin R, Finzi A, Uchil P. The Fc-effector function of COVID-19 convalescent plasma contributes to SARS-CoV-2 treatment efficacy in mice. Cell Reports Medicine 2022, 4: 100893. PMID: 36584683, PMCID: PMC9799175, DOI: 10.1016/j.xcrm.2022.100893.Peer-Reviewed Original ResearchConceptsCOVID-19 convalescent plasmaFc effector functionsSARS-CoV-2 controlFc effector activityInnate immune cellsCCP efficacyHACE2 miceConvalescent plasmaImmunoglobulin levelsPlasma therapyImmune cellsTreatment efficacyDelays mortalityIgG fractionFc functionLow neutralizingTherapySecond lineMortalityMicePlasma contributesEfficacyFC activityProphylaxisIgGA Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection
Beaudoin-Bussières G, Chen Y, Ullah I, Prévost J, Tolbert WD, Symmes K, Ding S, Benlarbi M, Gong SY, Tauzin A, Gasser R, Chatterjee D, Vézina D, Goyette G, Richard J, Zhou F, Stamatatos L, McGuire AT, Charest H, Roger M, Pozharski E, Kumar P, Mothes W, Uchil PD, Pazgier M, Finzi A. A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Reports 2022, 38: 110368. PMID: 35123652, PMCID: PMC8786652, DOI: 10.1016/j.celrep.2022.110368.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, NeutralizingAntibodies, ViralAntibody-Dependent Cell CytotoxicityCOVID-19COVID-19 SerotherapyDisease Models, AnimalEpitopesHumansImmunization, PassiveImmunoglobulin Fab FragmentsImmunoglobulin Fc FragmentsMiceProtein BindingProtein ConformationSARS-CoV-2Spike Glycoprotein, Coronavirus
2021
Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy
Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin-Bussières G, Symmes K, Benlarbi M, Ding S, Gasser R, Fink C, Chen Y, Tauzin A, Goyette G, Bourassa C, Medjahed H, Mack M, Chung K, Wilen CB, Dekaban GA, Dikeakos JD, Bruce EA, Kaufmann DE, Stamatatos L, McGuire AT, Richard J, Pazgier M, Bjorkman PJ, Mothes W, Finzi A, Kumar P, Uchil PD. Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity 2021, 54: 2143-2158.e15. PMID: 34453881, PMCID: PMC8372518, DOI: 10.1016/j.immuni.2021.08.015.Peer-Reviewed Original ResearchConceptsCOVID-19 convalescent subjectsSARS-CoV-2 infectionBioluminescence imagingK18-hACE2 miceLive bioluminescence imagingNatural killer cellsFc effector functionsSARS-CoV-2Convalescent subjectsKiller cellsPotent NAbsImmune protectionInflammatory responseEffector functionsNasal cavityNaB treatmentOptimal efficacyFc functionDepletion studiesMiceNAbsCOVID-19Direct neutralizationInfectionAntibodiesIn vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission
Haugh KA, Ladinsky MS, Ullah I, Stone HM, Pi R, Gilardet A, Grunst MW, Kumar P, Bjorkman PJ, Mothes W, Uchil PD. In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission. ELife 2021, 10: e64179. PMID: 34223819, PMCID: PMC8298093, DOI: 10.7554/elife.64179.Peer-Reviewed Original ResearchConceptsSentinel macrophagesSiglec-1/CD169Immune surveillance functionCommon host factorMesenteric sacsPeyer's patchesGastrointestinal tractOral routeReporter virusRetrovirus transmissionRetrovirus infectionFrontline cellsRetroviral pathogenesisHost factorsBioluminescence imagingVirus entryIncoming virusInfectionRetrovirus life cycleCD169Early eventsMacrophagesMultiscale imaging approachVirusSurveillance function
2019
Longitudinal bioluminescent imaging of HIV-1 infection during antiretroviral therapy and treatment interruption in humanized mice
Ventura JD, Beloor J, Allen E, Zhang T, Haugh KA, Uchil PD, Ochsenbauer C, Kieffer C, Kumar P, Hope TJ, Mothes W. Longitudinal bioluminescent imaging of HIV-1 infection during antiretroviral therapy and treatment interruption in humanized mice. PLOS Pathogens 2019, 15: e1008161. PMID: 31805155, PMCID: PMC6917343, DOI: 10.1371/journal.ppat.1008161.Peer-Reviewed Original ResearchConceptsHIV-1 infectionHumanized miceCombination antiretroviral therapy regimenViral spreadHIV-1 infection dynamicsNon-invasive bioluminescentAntiretroviral therapy regimenHIV-1 reporterSame lymphoid tissuesInfected cell populationCART withdrawalInfection recrudescenceAntiretroviral therapyTreatment interruptionTherapy regimenLymphoid tissueInfection dynamicsART treatmentBioluminescent imagingInfectionViral infection dynamicsInfected cellsCell populationsMiceBioluminescent signalMurine Leukemia Virus Exploits Innate Sensing by Toll-Like Receptor 7 in B-1 Cells To Establish Infection and Locally Spread in Mice
Pi R, Iwasaki A, Sewald X, Mothes W, Uchil PD. Murine Leukemia Virus Exploits Innate Sensing by Toll-Like Receptor 7 in B-1 Cells To Establish Infection and Locally Spread in Mice. Journal Of Virology 2019, 93: 10.1128/jvi.00930-19. PMID: 31434732, PMCID: PMC6803250, DOI: 10.1128/jvi.00930-19.Peer-Reviewed Original ResearchConceptsPopliteal lymph nodesFriend murine leukemia virusInnate immune sensing pathwaysToll-like receptor 7Viral spreadMurine leukemia virusCell-deficient miceType I interferon responseWild-type miceCell populationsType I interferonLeukemia virusRobust virus replicationI interferon responseAntiviral intervention strategiesInfected cell typesSentinel macrophagesAdoptive transferCell typesLymph nodesReceptor 7Virus infectionInnate sensingB cellsI interferonCalcium Phosphate-Mediated Transfection of Eukaryotic Cells with Plasmid DNAs.
Kumar P, Nagarajan A, Uchil PD. Calcium Phosphate-Mediated Transfection of Eukaryotic Cells with Plasmid DNAs. Cold Spring Harbor Protocols 2019, 2019: pdb.prot095430. PMID: 31575793, DOI: 10.1101/pdb.prot095430.Peer-Reviewed Original ResearchCalcium Phosphate-Mediated Transfection of Cells with High-Molecular-Weight Genomic DNA.
Kumar P, Nagarajan A, Uchil PD. Calcium Phosphate-Mediated Transfection of Cells with High-Molecular-Weight Genomic DNA. Cold Spring Harbor Protocols 2019, 2019: pdb.prot095448. PMID: 31575794, DOI: 10.1101/pdb.prot095448.Peer-Reviewed Original ResearchTransfection of Mammalian Cells with Calcium Phosphate-DNA Coprecipitates.
Kumar P, Nagarajan A, Uchil PD. Transfection of Mammalian Cells with Calcium Phosphate-DNA Coprecipitates. Cold Spring Harbor Protocols 2019, 2019: pdb.top096255. PMID: 31575800, DOI: 10.1101/pdb.top096255.Peer-Reviewed Original ResearchIntroducing Genes into Cultured Mammalian Cells
Kumar P, Nagarajan A, Uchil PD. Introducing Genes into Cultured Mammalian Cells. Cold Spring Harbor Protocols 2019, 2019: pdb.top095406. PMID: 31285274, DOI: 10.1101/pdb.top095406.Peer-Reviewed Original ResearchIn vivo Imaging-Driven Approaches to Study Virus Dissemination and Pathogenesis
Uchil PD, Haugh KA, Pi R, Mothes W. In vivo Imaging-Driven Approaches to Study Virus Dissemination and Pathogenesis. Annual Review Of Virology 2019, 6: 1-24. PMID: 31283440, PMCID: PMC7217087, DOI: 10.1146/annurev-virology-101416-041429.Peer-Reviewed Original ResearchDNA Transfection by Electroporation.
Kumar P, Nagarajan A, Uchil PD. DNA Transfection by Electroporation. Cold Spring Harbor Protocols 2019, 2019: pdb.prot095471. PMID: 31262956, DOI: 10.1101/pdb.prot095471.Peer-Reviewed Original ResearchDNA Transfection Mediated by Cationic Lipid Reagents
Kumar P, Nagarajan A, Uchil PD. DNA Transfection Mediated by Cationic Lipid Reagents. Cold Spring Harbor Protocols 2019, 2019: pdb.prot095414. PMID: 30824617, DOI: 10.1101/pdb.prot095414.Peer-Reviewed Original ResearchConceptsCell typesSpecific cell typesCationic lipid reagentsSuspension cell typesDNA transfectionLiposomal transfection reagentTransfection procedureCell linesLipid reagentsFuGENE 6Transfection reagentPresence of serumLipofectamine 2000Number of manipulationsGeneralistsTransfectionAlternative protocolManipulationCellsMost adherentLipofectin
2018
A Protective Role for the Lectin CD169/Siglec-1 against a Pathogenic Murine Retrovirus
Uchil PD, Pi R, Haugh KA, Ladinsky MS, Ventura JD, Barrett BS, Santiago ML, Bjorkman PJ, Kassiotis G, Sewald X, Mothes W. A Protective Role for the Lectin CD169/Siglec-1 against a Pathogenic Murine Retrovirus. Cell Host & Microbe 2018, 25: 87-100.e10. PMID: 30595553, PMCID: PMC6331384, DOI: 10.1016/j.chom.2018.11.011.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD8-Positive T-LymphocytesCell ProliferationDendritic CellsDisease Models, AnimalErythroblastsFemaleInterferon Type ILectinsLymph NodesMacrophagesMaleMiceMice, Inbred BALB CMice, Inbred C57BLProtective AgentsRetroviridaeRetroviridae InfectionsSialic Acid Binding Ig-like Lectin 1SpleenT-Lymphocytes, CytotoxicViral LoadConceptsCD169/SiglecEffective cytotoxic T lymphocyte (CTL) responseProtective roleCytotoxic T lymphocyte responsesLymph node infectionT lymphocyte responsesHigh viral loadSusceptible mouse strainsMarginal zone metallophilic macrophagesPermissive lymphocytesCytotoxic CD8Lymphocyte responsesViral loadSubcapsular sinusComplex infectionMurine modelViral disseminationMetallophilic macrophagesRed pulpCell responsesSystemic spreadMouse strainsPathogenesisCells 1CD169Optical Transfection.
Kumar P, Nagarajan A, Uchil PD. Optical Transfection. Cold Spring Harbor Protocols 2018, 2018: pdb.top096222. PMID: 30510131, DOI: 10.1101/pdb.top096222.Peer-Reviewed Original ResearchSelective Agents for Stable Transfection.
Kumar P, Nagarajan A, Uchil PD. Selective Agents for Stable Transfection. Cold Spring Harbor Protocols 2018, 2018: pdb.top096230. PMID: 30181228, DOI: 10.1101/pdb.top096230.Peer-Reviewed Original ResearchTransfection Mediated by DEAE-Dextran.
Kumar P, Nagarajan A, Uchil PD. Transfection Mediated by DEAE-Dextran. Cold Spring Harbor Protocols 2018, 2018: pdb.prot095463. PMID: 29967275, DOI: 10.1101/pdb.prot095463.Peer-Reviewed Original ResearchSmall Interfering RNA-Mediated Control of Virus Replication in the CNS Is Therapeutic and Enables Natural Immunity to West Nile Virus
Beloor J, Maes N, Ullah I, Uchil P, Jackson A, Fikrig E, Lee SK, Kumar P. Small Interfering RNA-Mediated Control of Virus Replication in the CNS Is Therapeutic and Enables Natural Immunity to West Nile Virus. Cell Host & Microbe 2018, 23: 549-556.e3. PMID: 29606496, PMCID: PMC6074029, DOI: 10.1016/j.chom.2018.03.001.Peer-Reviewed Original ResearchConceptsWest Nile virusWNV infectionCell-mediated immune responsesLate-stage therapySubsequent WNV infectionWNV-infected miceLong-term immunityNile virusWNV E proteinViral burdenIntranasal routeVirus clearanceVirus infectionImmune responseMice succumbPeripheral tissuesNatural immunitySurvival rateDisease resultsDay 9Virus replicationInfectionImmunityCNSVirus
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply