2023
Thrombocyte-derived Dickkopf1 promotes macrophage polarization in the Bleomycin-induced lung injury model
Sung E, Park M, Song S, Alanya H, Henegariu O, Liu J, Erson-Omay E, Sime P, Chae W. Thrombocyte-derived Dickkopf1 promotes macrophage polarization in the Bleomycin-induced lung injury model. Frontiers In Immunology 2023, 14: 1247330. PMID: 38162655, PMCID: PMC10757334, DOI: 10.3389/fimmu.2023.1247330.Peer-Reviewed Original ResearchConceptsLung injury modelMacrophage polarizationTissue repair processInjury modelMonocyte-derived alveolar macrophagesInjury-induced inflammationTissue repairRepair processRole of WntGene expression profilesImmunomodulatory roleIL-13Tissue injuryImmune responseInflammationCollagen depositionAlveolar macrophagesMacrophagesTissue homeostasisProtein expressionGene expressionRegulatory ligandsExpression profilesWnt antagonist Dickkopf1Dickkopf1Dickkopf1 Promotes Pulmonary Fibrosis upon Bleomycin-Induced Lung Injury
Sung E, Park M, Henegariu O, Sime P, Chae W. Dickkopf1 Promotes Pulmonary Fibrosis upon Bleomycin-Induced Lung Injury. American Journal Of Pathology 2023, 193: 1130-1142. PMID: 37263344, PMCID: PMC10477954, DOI: 10.1016/j.ajpath.2023.05.009.Peer-Reviewed Original ResearchConceptsLung injuryImmune cell infiltrationLung inflammationCell infiltrationCollagen depositionBleomycin-Induced Lung InjuryOrchestration of inflammationRole of DKK1Patient's lung tissueSmooth muscle actinGrowth factor-β1Myofibroblast marker αDKK1 protein expressionTissue repair processAntibody administrationPulmonary inflammationPulmonary fibrosisProfibrotic cytokinesDKK1 levelsAttractive molecular targetFibrosis modelLung tissueTissue injuryTissue fibrosisFactor-β1
2001
A triple color FISH technique for mouse chromosome identification
Henegariu O, Dunai J, Chen X, Korenberg J, Ward D, Greally J. A triple color FISH technique for mouse chromosome identification. Mammalian Genome 2001, 12: 462-465. PMID: 11353394, DOI: 10.1007/s003350020038.Peer-Reviewed Original ResearchMulti-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell
Krause D, Theise N, Collector M, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis S. Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell. Cell 2001, 105: 369-377. PMID: 11348593, DOI: 10.1016/s0092-8674(01)00328-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD34Antigens, LyBone Marrow CellsCell LineageCell MovementEpithelial CellsFemaleFluorescent DyesHematopoietic Stem Cell TransplantationHematopoietic Stem CellsHumansImmunohistochemistryIn Situ Hybridization, FluorescenceIntestine, SmallKeratinsLungMaleMembrane ProteinsMiceMice, KnockoutOrganic ChemicalsPulmonary SurfactantsStem CellsY ChromosomeConceptsLong-term repopulationSingle bone marrowMulti-lineage engraftmentAdult bone marrow cellsProperties of HSCHematopoietic stemSecondary hostsGenetic diseasesStem cellsBone marrow cellsExpression increasesDifferentiative capacityBone marrowEpithelial cellsSerial transplantationRare cellsTissue repairMarrow cellsCellsDifferentiationHostSecondary recipientsGI tractPhenotypeMarrowCryptic Translocation Identification in Human and Mouse Using Several Telomeric Multiplex FISH (TM-FISH) Strategies
Henegariu O, Artan S, Greally J, Chen X, Korenberg J, Vance G, Stubbs L, Bray-Ward P, Ward D. Cryptic Translocation Identification in Human and Mouse Using Several Telomeric Multiplex FISH (TM-FISH) Strategies. Laboratory Investigation 2001, 81: 483-491. PMID: 11304567, DOI: 10.1038/labinvest.3780256.Peer-Reviewed Original ResearchConceptsSubtelomeric regionsHuman subtelomeric regionsMouse chromosomesHuman chromosomesP1 clonesMouse probeMultiplex fluorescenceM-FISHChromosomesFISH strategySet of probesStandard fluorescence microscopeSmall rearrangementsSitu hybridizationLabeling strategyCryptic translocationSubtelomeric probesIdiopathic mental retardationFluorescence microscopeKnown markerCentromeresKilobases
2000
Chromosome instability contributes to loss of heterozygosity in mice lacking p53
Shao C, Deng L, Henegariu O, Liang L, Stambrook P, Tischfield J. Chromosome instability contributes to loss of heterozygosity in mice lacking p53. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 7405-7410. PMID: 10861008, PMCID: PMC16558, DOI: 10.1073/pnas.97.13.7405.Peer-Reviewed Original ResearchConceptsGenetic instabilityChromosome instabilityP53-null miceP53 tumor suppressor proteinMultiple cellular processesCell cycle checkpointsTumor suppressor proteinSomatic cell variantsNormal cellsNull miceCellular processesCycle checkpointsGenetic variationMitotic recombinationSuppressor proteinEpigenetic alterationsInterstitial deletionLOH eventsCell deathLoss of heterozygosityP53 functionFibroblast coloniesPoint mutationsFunctional p53Tumor initiationDerivation of hepatocytes from bone marrow cells in mice after radiation‐induced myeloablation
Theise N, Badve S, Saxena R, Henegariu O, Sell S, Crawford J, Krause D. Derivation of hepatocytes from bone marrow cells in mice after radiation‐induced myeloablation. Hepatology 2000, 31: 235-240. PMID: 10613752, DOI: 10.1002/hep.510310135.Peer-Reviewed Original ResearchConceptsBone marrow cellsY chromosomeMarrow cellsFemale miceMessenger RNAWhole bone marrow transplantsAge-matched male donorsDerivation of hepatocytesSkeletal muscle regenerationSevere acute injuryAcute hepatic injuryBone marrow transplantationBone marrow transplantSimultaneous FISHFluorescence-activated cell sorterMale-derived cellsOval cell proliferationDays posttransplantationMonths posttransplantationHepatic injuryMarrow transplantationMarrow transplantAcute injuryMonth 2Hepatic engraftment
1999
Mitotic recombination produces the majority of recessive fibroblast variants in heterozygous mice
Shao C, Deng L, Henegariu O, Liang L, Raikwar N, Sahota A, Stambrook P, Tischfield J. Mitotic recombination produces the majority of recessive fibroblast variants in heterozygous mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 9230-9235. PMID: 10430925, PMCID: PMC17762, DOI: 10.1073/pnas.96.16.9230.Peer-Reviewed Original ResearchMeSH KeywordsAdenine PhosphoribosyltransferaseAnimalsChromosome MappingCrosses, GeneticEar, ExternalExonsFemaleFibroblastsGenes, RecessiveGenetic VariationHeterozygoteHumansLoss of HeterozygosityMaleMiceMice, Inbred C3HMice, Inbred StrainsMice, Mutant StrainsMutagenesisPoint MutationRecombination, GeneticSkinT-LymphocytesConceptsMitotic recombinationPolymorphic molecular markersSomatic cell variantsProgeny of crossesFrequency of crossoversHigh spontaneous frequencyAPRT enzyme activitySomatic mutagenesisMap distanceCytological markersSelection mediumHuman peripheral T cellsMolecular markersChromosome 8Vivo lossCell coloniesAPRTEnzyme activityNormal fibroblastsRecombinationHeterozygous micePeripheral T cellsAdenine analogueHeterozygote miceVivo
1998
Protein-tyrosine Phosphatase Shp-2 Regulates Cell Spreading, Migration, and Focal Adhesion*
Yu D, Qu C, Henegariu O, Lu X, Feng G. Protein-tyrosine Phosphatase Shp-2 Regulates Cell Spreading, Migration, and Focal Adhesion*. Journal Of Biological Chemistry 1998, 273: 21125-21131. PMID: 9694867, DOI: 10.1074/jbc.273.33.21125.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionCell Adhesion MoleculesCell LineCell MovementCytoskeletal ProteinsFibroblastsFocal Adhesion Kinase 1Focal Adhesion Protein-Tyrosine KinasesHeterozygoteHomozygoteIntracellular Signaling Peptides and ProteinsMicePaxillinPhenotypePhosphoproteinsProtein Tyrosine Phosphatase, Non-Receptor Type 11Protein Tyrosine Phosphatase, Non-Receptor Type 6Protein Tyrosine PhosphatasesProtein-Tyrosine KinasesSH2 Domain-Containing Protein Tyrosine PhosphatasesConceptsShp-2 mutant cellsMutant cellsFocal adhesionsSHP-2Tyrosine phosphataseProtein tyrosine phosphatase SHP-2SHP-2 tyrosine phosphataseCell spreadingFunctional SHP-2SHP-2 mutationsPhosphatase SHP-2Cytoplasmic tyrosine phosphataseF-actin aggregationWild-type cellsFocal adhesion kinaseMesodermal patterningSH2 domainFAK dephosphorylationCytoskeletal architectureSrc SH2Adhesion kinaseSignal relayCell peripheryGrowth factor receptorCell motility