2023
Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
Kucukkaya A, Zeevi T, Chai N, Raju R, Haider S, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Scientific Reports 2023, 13: 7579. PMID: 37165035, PMCID: PMC10172370, DOI: 10.1038/s41598-023-34439-7.Peer-Reviewed Original Research
2022
Machine Learning Models for Prediction of Posttreatment Recurrence in Early-Stage Hepatocellular Carcinoma Using Pretreatment Clinical and MRI Features: A Proof-of-Concept Study.
Iseke S, Zeevi T, Kucukkaya AS, Raju R, Gross M, Haider SP, Petukhova-Greenstein A, Kuhn TN, Lin M, Nowak M, Cooper K, Thomas E, Weber MA, Madoff DC, Staib L, Batra R, Chapiro J. Machine Learning Models for Prediction of Posttreatment Recurrence in Early-Stage Hepatocellular Carcinoma Using Pretreatment Clinical and MRI Features: A Proof-of-Concept Study. American Journal Of Roentgenology 2022, 220: 245-255. PMID: 35975886, PMCID: PMC10015590, DOI: 10.2214/ajr.22.28077.Peer-Reviewed Original ResearchConceptsEarly-stage hepatocellular carcinomaLiver transplantHepatocellular carcinomaImaging featuresPosttreatment recurrenceOrgan allocationMean AUCLiver transplant eligibilityPretreatment clinical characteristicsPretreatment MRI examinationsKaplan-Meier analysisKaplan-Meier curvesClinical characteristicsImaging surveillanceTherapy allocationTransplant eligibilityUnderwent treatmentClinical parametersRetrospective studyUnpredictable complicationMRI dataConcept studyPoor survivalClinical impactPretreatment MRIClinical implementation of artificial intelligence in neuroradiology with development of a novel workflow-efficient picture archiving and communication system-based automated brain tumor segmentation and radiomic feature extraction
Aboian M, Bousabarah K, Kazarian E, Zeevi T, Holler W, Merkaj S, Petersen G, Bahar R, Subramanian H, Sunku P, Schrickel E, Bhawnani J, Zawalich M, Mahajan A, Malhotra A, Payabvash S, Tocino I, Lin M, Westerhoff M. Clinical implementation of artificial intelligence in neuroradiology with development of a novel workflow-efficient picture archiving and communication system-based automated brain tumor segmentation and radiomic feature extraction. Frontiers In Neuroscience 2022, 16: 860208. PMID: 36312024, PMCID: PMC9606757, DOI: 10.3389/fnins.2022.860208.Peer-Reviewed Original ResearchBrain tumor segmentationMedical imagesFeature extractionTumor segmentationRadiomic feature extractionDiagnostic workstationDeep learning-based algorithmPatient's medical imagesLearning-based algorithmFeature extraction toolImage processing algorithmsYale New Haven HealthGround truth dataImage annotationAI-segmentationAI algorithmsArtificial intelligenceEnd workflowProcessing algorithmsPicture archivingLarge datasetsLarge expertManual modificationInternal datasetManual segmentationMachine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities
Merkaj S, Bahar RC, Zeevi T, Lin M, Ikuta I, Bousabarah K, Petersen G, Staib L, Payabvash S, Mongan JT, Cha S, Aboian MS. Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities. Cancers 2022, 14: 2623. PMID: 35681603, PMCID: PMC9179416, DOI: 10.3390/cancers14112623.Peer-Reviewed Original ResearchMachine learning toolsGrade predictionLearning toolsML applicationsClassifier algorithmML modelsClassification methodMedical imagingData sourcesPractices of radiologistsToolGlioma gradingNext stepWorkflowAlgorithmChallengesTechnological innovationImplementationPredictionModelLast decadeSpecific areasIntegration of Machine Learning Into Clinical Radiology Practice – Development of a Machine Learning Tool for Preoperative Glioma Grade Prediction (P14-9.002)
Merkaj S, Zeevi T, Bousabarah K, Kazarian E, Lin M, Pala A, Petersen G, Jekel L, Bahar R, Tillmanns N, Cui J, Ikuta I, Bronen R, Fadel S, Westerhoff M, Omuro A, Aboian M. Integration of Machine Learning Into Clinical Radiology Practice – Development of a Machine Learning Tool for Preoperative Glioma Grade Prediction (P14-9.002). Neurology 2022, 98 DOI: 10.1212/wnl.98.18_supplement.3243.Peer-Reviewed Original ResearchSystematic Review of Machine Learning Models for Differentiation of Glioma from Brain Metastasis (P14-9.006)
Jekel L, Brim W, Petersen G, Merkaj S, Subramanian H, Zeevi T, Payabvash S, Khaled B, Lin M, Cui J, Brackett A, Johnson M, Omuro A, Scheffler B, Aboian M. Systematic Review of Machine Learning Models for Differentiation of Glioma from Brain Metastasis (P14-9.006). Neurology 2022, 98 DOI: 10.1212/wnl.98.18_supplement.3376.Peer-Reviewed Original ResearchDevelopment of a workflow efficient PACS based automated brain tumor segmentation and radiomic feature extraction for clinical implementation (N2.003)
Aboian M, Bousabarah K, Kazarian E, Zeevi T, Holler W, Merkaj S, Petersen G, Bahar R, Subramanian H, Sunku P, Schrickel E, Mahajan A, Malhotra A, Payabvash S, Tocino I, Lin M, Westerhoff M. Development of a workflow efficient PACS based automated brain tumor segmentation and radiomic feature extraction for clinical implementation (N2.003). Neurology 2022, 98 DOI: 10.1212/wnl.98.18_supplement.3146.Peer-Reviewed Original ResearchMachine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis
Bahar RC, Merkaj S, Petersen G, Tillmanns N, Subramanian H, Brim WR, Zeevi T, Staib L, Kazarian E, Lin M, Bousabarah K, Huttner AJ, Pala A, Payabvash S, Ivanidze J, Cui J, Malhotra A, Aboian MS. Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis. Frontiers In Oncology 2022, 12: 856231. PMID: 35530302, PMCID: PMC9076130, DOI: 10.3389/fonc.2022.856231.Peer-Reviewed Original ResearchMachine learning modelsLearning modelConvolutional neural networkDeep learning studiesLarge training datasetsGrade predictionSupport vector machineApplication of MLNeural networkConventional machineVector machineTraining datasetBest performing modelCommon algorithmsModel performanceEssential metricMean prediction accuracyHigh predictive accuracyPrediction accuracyPerforming modelMachinePrediction modelDiagnosis statementsAccuracy statementsLearning studiesMR Imaging Biomarkers for the Prediction of Outcome after Radiofrequency Ablation of Hepatocellular Carcinoma: Qualitative and Quantitative Assessments of the Liver Imaging Reporting and Data System and Radiomic Features
Petukhova-Greenstein A, Zeevi T, Yang J, Chai N, DiDomenico P, Deng Y, Ciarleglio M, Haider SP, Onyiuke I, Malpani R, Lin M, Kucukkaya AS, Gottwald LA, Gebauer B, Revzin M, Onofrey J, Staib L, Gunabushanam G, Taddei T, Chapiro J. MR Imaging Biomarkers for the Prediction of Outcome after Radiofrequency Ablation of Hepatocellular Carcinoma: Qualitative and Quantitative Assessments of the Liver Imaging Reporting and Data System and Radiomic Features. Journal Of Vascular And Interventional Radiology 2022, 33: 814-824.e3. PMID: 35460887, PMCID: PMC9335926, DOI: 10.1016/j.jvir.2022.04.006.Peer-Reviewed Original ResearchConceptsProgression-free survivalPoor progression-free survivalLiver Imaging ReportingHepatocellular carcinomaMR imaging biomarkersRadiomics signatureRadiofrequency ablationRadiomic featuresImaging biomarkersImaging ReportingFirst follow-up imagingMedian progression-free survivalRF ablationEarly-stage hepatocellular carcinomaPretreatment magnetic resonanceFirst-line treatmentMultifocal hepatocellular carcinomaSelection operator Cox regression modelTherapy-naïve patientsEarly-stage diseaseKaplan-Meier analysisCox regression modelLog-rank testFollow-up imagingPrediction of outcomeMachine Learning Applications for Differentiation of Glioma from Brain Metastasis—A Systematic Review
Jekel L, Brim WR, von Reppert M, Staib L, Petersen G, Merkaj S, Subramanian H, Zeevi T, Payabvash S, Bousabarah K, Lin M, Cui J, Brackett A, Mahajan A, Omuro A, Johnson MH, Chiang VL, Malhotra A, Scheffler B, Aboian MS. Machine Learning Applications for Differentiation of Glioma from Brain Metastasis—A Systematic Review. Cancers 2022, 14: 1369. PMID: 35326526, PMCID: PMC8946855, DOI: 10.3390/cancers14061369.Peer-Reviewed Original ResearchBrain metastasesDifferentiation of gliomasMagnetic resonance imagingEligible studiesSystematic reviewSingle-center institutionConventional magnetic resonance imagingSpecific clinical circumstancesNon-invasive differentiationQuality of reportingClinical circumstancesPoor reportingClinical practiceModel assessmentResonance imagingMetastasisStudy designGliomasTRIPOD StatementMultiple studiesExternal validationClinical translationAdherenceDifferentiationReviewIdentifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries
Tillmanns N, Lum AE, Cassinelli G, Merkaj S, Verma T, Zeevi T, Staib L, Subramanian H, Bahar RC, Brim W, Lost J, Jekel L, Brackett A, Payabvash S, Ikuta I, Lin M, Bousabarah K, Johnson MH, Cui J, Malhotra A, Omuro A, Turowski B, Aboian MS. Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries. Neuro-Oncology Advances 2022, 4: vdac093. PMID: 36071926, PMCID: PMC9446682, DOI: 10.1093/noajnl/vdac093.Peer-Reviewed Original ResearchGlioma segmentationResearch algorithmSegmentation of gliomasHigh accuracy resultsML algorithmsApplicable machineAccuracy resultsTCIA datasetSegmentationAlgorithmMachinePatient dataSystematic literature reviewOverfittingData extractionDatasetBratDatabaseRecent advancesResearch literatureLimitationsExtractionCurrent research literatureMethod
2020
PROOF-OF-CONCEPT USE OF MACHINE LEARNING TO PREDICT TUMOR RECURRENCE OF EARLY-STAGE HEPATOCELLULAR CARCINOMA BEFORE THERAPY USING BASELINE MAGNETIC RESONANCE IMAGING
Batra R, Kuecuekkaya A, Zeevi T, Raju R, Chai N, Haider S, Elbanan M, Petukhova A, Lin ,, Onofrey J, Nowak M, Cooper K, Thomas E, Gebauer B, Staib L, Chapiro J. PROOF-OF-CONCEPT USE OF MACHINE LEARNING TO PREDICT TUMOR RECURRENCE OF EARLY-STAGE HEPATOCELLULAR CARCINOMA BEFORE THERAPY USING BASELINE MAGNETIC RESONANCE IMAGING. Transplantation 2020, 104: s43-s44. DOI: 10.1097/01.tp.0000698472.65040.1e.Peer-Reviewed Original ResearchReliable prediction of survival in advanced-stage hepatocellular carcinoma treated with sorafenib: comparing 1D and 3D quantitative tumor response criteria on MRI
Doemel LA, Chapiro J, Laage Gaupp F, Savic LJ, Kucukkaya AS, Petukhova A, Tefera J, Zeevi T, Lin M, Schlachter T, Jaffe A, Strazzabosco M, Patel T, Stein SM. Reliable prediction of survival in advanced-stage hepatocellular carcinoma treated with sorafenib: comparing 1D and 3D quantitative tumor response criteria on MRI. European Radiology 2020, 31: 2737-2746. PMID: 33123796, PMCID: PMC8043967, DOI: 10.1007/s00330-020-07381-9.Peer-Reviewed Original ResearchConceptsTumor response criteriaOverall survivalAdvanced-stage HCCDisease progressionSorafenib therapyDisease controlResponse criteriaCox proportional hazards regression modelAdvanced-stage hepatocellular carcinomaProportional hazards regression modelsDCE-MRIInitiation of sorafenibTumor response analysisMultivariable Cox regressionIndependent risk factorMethodsThis retrospective analysisIndependent prognostic factorInitiation of treatmentKaplan-Meier analysisKaplan-Meier curvesHazards regression modelsLog-rank testStratification of patientsTotal tumor volumeArterial phase MRI
2021
Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach
Malpani R, Petty CW, Yang J, Bhatt N, Zeevi T, Chockalingam V, Raju R, Petukhova-Greenstein A, Santana JG, Schlachter TR, Madoff DC, Chapiro J, Duncan J, Lin M. Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach. Journal Of Vascular And Interventional Radiology 2021, 33: 324-332.e2. PMID: 34923098, PMCID: PMC8972393, DOI: 10.1016/j.jvir.2021.12.017.Peer-Reviewed Original ResearchOTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review
Brim W, Jekel L, Petersen G, Subramanian H, Zeevi T, Payabvash S, Bousabarah K, Lin M, Cui J, Brackett A, Mahajan A, Johnson M, Mahajan A, Aboian M. OTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review. Neuro-Oncology Advances 2021, 3: iii17-iii17. PMCID: PMC8351249, DOI: 10.1093/noajnl/vdab071.067.Peer-Reviewed Original ResearchConvolutional neural networkDeep learningML algorithmsMachine Learning AlgorithmsApplication of machineClassical ML algorithmsDevelopment of machineSupport vector machine algorithmVector machine algorithmArtificial intelligenceMachine learningSearch strategyDL modelsLearning algorithmFeature extractionNeural networkMachine algorithmAverage accuracyML methodsCML algorithmAlgorithmHigh accuracyLearningMachineAccuracyOTHR-15. Assessment of TRIPOD adherence in articles developing machine learning models for differentiation of glioma from brain metastasis
Jekel L, Brim W, Petersen G, Subramanian H, Zeevi T, Payabvash S, Bousabarah K, Lin M, Cui J, Brackett A, Johnson M, Malhotra A, Aboian M. OTHR-15. Assessment of TRIPOD adherence in articles developing machine learning models for differentiation of glioma from brain metastasis. Neuro-Oncology Advances 2021, 3: iii17-iii18. PMCID: PMC8351195, DOI: 10.1093/noajnl/vdab071.070.Peer-Reviewed Original ResearchThermal ablation alone vs thermal ablation combined with transarterial chemoembolization for patients with small (<3 cm) hepatocellular carcinoma
Chai NX, Chapiro J, Petukhova A, Gross M, Kucukkaya A, Raju R, Zeevi T, Elbanan M, Lin M, Perez-Lozada JC, Schlachter T, Strazzabosco M, Pollak JS, Madoff DC. Thermal ablation alone vs thermal ablation combined with transarterial chemoembolization for patients with small (<3 cm) hepatocellular carcinoma. Clinical Imaging 2021, 76: 123-129. PMID: 33592550, PMCID: PMC8217099, DOI: 10.1016/j.clinimag.2021.01.043.Peer-Reviewed Original ResearchConceptsOverall survivalTransarterial chemoembolizationHepatocellular carcinomaThermal ablationTA groupEarly-stage hepatocellular carcinomaMedian overall survivalTherapy-naïve patientsKaplan-Meier analysisMaximum tumor diameterStage hepatocellular carcinomaLog-rank testDrug-eluting beadsSmall hepatocellular carcinomaTerms of TTPHIPAA-compliant IRBSignificant differencesLipiodol-TACELocoregional therapyBCLC stageComplication rateTreatment cohortsTumor diameterAFP levelsPatient group