2025
Gypsum heterogenous nucleation pathways regulated by surface functional groups and hydrophobicity
Guan Y, Hong X, Karanikola V, Wang Z, Pan W, Wu H, Wang F, Yu H, Elimelech M. Gypsum heterogenous nucleation pathways regulated by surface functional groups and hydrophobicity. Nature Communications 2025, 16: 713. PMID: 39820035, PMCID: PMC11739488, DOI: 10.1038/s41467-025-55993-w.Peer-Reviewed Original ResearchSurface functional groupsGypsum formationSurface-induced nucleationSelf-assembled monolayersIon adsorption sitesFormation of gypsum crystalsFunctional groupsIn situ microscopyGypsum nucleationOH functional groupsHydrophilic surfaceGypsum crystalsTemporal-spatial resolutionFormation mechanismGypsumIndustrial processesNucleationMolecular dynamics simulationsHydrophobic surfaceHeterogeneous nucleation pathwayNucleation pathwayLimitations of experimental techniquesSurfaceExperimental techniquesDynamics simulationsA highly selective and energy efficient approach to boron removal overcomes the Achilles heel of seawater desalination
Pan W, Roy D, Uralcan B, Patel S, Iddya A, Ahn E, Haji-Akbari A, Kamcev J, Elimelech M. A highly selective and energy efficient approach to boron removal overcomes the Achilles heel of seawater desalination. Nature Water 2025, 3: 99-109. DOI: 10.1038/s44221-024-00362-y.Peer-Reviewed Original ResearchHydroxyl groupsImproved electrode performanceMolecular dynamics simulationsBoron selectivityPristine electrodeHydrogen bondsElectrode performanceFunctional electrodesElectrosorption processIon-exchange adsorptionMicroporous electrodesDynamics simulationsFunctional groupsOxygen-containingRemoval selectivityTrace contaminantsElectrosorptionBoron removalElectrodeBoron removal performanceBoronHydroxylBoron removal methodsRemoval of trace contaminantsReverse osmosis
2024
Tuning Metal–Organic Framework Linker Chemistry for Transition Metal Ion Separations
Violet C, Parkinson M, Ball A, Kulik H, Fortner J, Elimelech M. Tuning Metal–Organic Framework Linker Chemistry for Transition Metal Ion Separations. ACS Applied Materials & Interfaces 2024, 17: 1911-1921. PMID: 39682030, DOI: 10.1021/acsami.4c16173.Peer-Reviewed Original ResearchMetal-organic frameworksUiO-66-XTransition metal ionsIon separationMetal ionsSolvent-assisted linker exchangeParent metal-organic frameworkDensity functional theory calculationsFunctional groupsBinding energyUiO-66-(COOH)<sub>2</subIon binding energiesMetal ion separationUiO-66-COOHUiO-66 derivativesLinker chemistryPost-synthetic modificationCarboxylic acid groupsIncorporation of carboxylic acid groupsQuartz crystal microbalanceLinker exchangeUiO-66Pore windowsHigh selectivityMaterials chemistryDesigning membranes with specific binding sites for selective ion separations
Violet C, Ball A, Heiranian M, Villalobos L, Zhang J, Uralcan B, Kulik H, Haji-Akbari A, Elimelech M. Designing membranes with specific binding sites for selective ion separations. Nature Water 2024, 2: 706-718. DOI: 10.1038/s44221-024-00279-6.Peer-Reviewed Original ResearchMembrane nanochannelsFunctional groupsCovalent organic frameworksMetal-organic frameworksSelective ion separationIon binding energiesMembrane material designSelective ion transportIon binding affinityEnergy storage technologiesOrganic frameworksIon separationSynthetic methodNanostructured materialsBinding sitesBinding energyMaterial designDesign membranesDrug discoveryAngstrom scaleChemical interactionIonsChemical featuresNanochannelsIon transport
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply