Deep learning analysis of fMRI data for predicting Alzheimer’s Disease: A focus on convolutional neural networks and model interpretability
Zhou X, Kedia S, Meng R, Gerstein M. Deep learning analysis of fMRI data for predicting Alzheimer’s Disease: A focus on convolutional neural networks and model interpretability. PLOS ONE 2024, 19: e0312848. PMID: 39630834, PMCID: PMC11616848, DOI: 10.1371/journal.pone.0312848.Peer-Reviewed Original ResearchConceptsConvolutional neural networkNeural networkAlzheimer's diseaseConvolutional neural network modelMultimodal medical datasetsDeep learning methodsPotential of deep learningGenetic risk factorsMedical datasetsAlzheimer's Disease Neuroimaging InitiativeAD predictionDeep learningDeep learning analysisLearning methodsMedical imagesPredicting Alzheimer's diseaseDetection of Alzheimer's diseaseModel interpretationEarly detection of Alzheimer's diseaseAccuracy levelGenetic factorsDatasetEarly detection of ADNetworkDetection of ADSingle-cell multi-cohort dissection of the schizophrenia transcriptome
Ruzicka W, Mohammadi S, Fullard J, Davila-Velderrain J, Subburaju S, Tso D, Hourihan M, Jiang S, Lee H, Bendl J, Voloudakis G, Haroutunian V, Hoffman G, Roussos P, Kellis M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Rozowsky J, Ruth M, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024, 384: eadg5136. PMID: 38781388, DOI: 10.1126/science.adg5136.Peer-Reviewed Original ResearchConceptsGenetic risk factorsRisk factorsTranscriptional changesHeterogeneity of schizophreniaNeuronal cell statesSchizophrenia pathophysiologySingle-cell dissectionExcitatory neuronsEffective therapySchizophrenia transcriptomicsCortical cytoarchitectureSingle-cell atlasGenomic variantsCell groupsHuman prefrontal cortexMolecular pathwaysSchizophreniaTranscriptional alterationsTranscriptomic changesPrefrontal cortexCell statesAlterationsTherapyPathophysiologyDissection
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply