Digital phenotyping from wearables using AI characterizes psychiatric disorders and identifies genetic associations
Liu J, Borsari B, Li Y, Liu S, Gao Y, Xin X, Lou S, Jensen M, Garrido-MartĂn D, Verplaetse T, Ash G, Zhang J, Girgenti M, Roberts W, Gerstein M. Digital phenotyping from wearables using AI characterizes psychiatric disorders and identifies genetic associations. Cell 2024, 188: 515-529.e15. PMID: 39706190, DOI: 10.1016/j.cell.2024.11.012.Peer-Reviewed Original ResearchGenome-wide association studiesCase-control genome-wide association studyMultivariate genome-wide association studyGenetic lociAssociation studiesGenetic dataGenetic associationPhenotypeGeneticsEnvironmental factorsDetection powerElfn1Adolescent Brain Cognitive DevelopmentLociGenesPsychiatric disordersADORA3Digital phenotypingCross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain
Wen C, Margolis M, Dai R, Zhang P, Przytycki P, Vo D, Bhattacharya A, Matoba N, Tang M, Jiao C, Kim M, Tsai E, Hoh C, AygĂĽn N, Walker R, Chatzinakos C, Clarke D, Pratt H, Peters M, Gerstein M, Daskalakis N, Weng Z, Jaffe A, Kleinman J, Hyde T, Weinberger D, Bray N, Sestan N, Geschwind D, Roeder K, Gusev A, Pasaniuc B, Stein J, Love M, Pollard K, Liu C, Gandal M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Bendl J, Berretta S, Bharadwaj R, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clement A, Collado-Torres L, Cooper G, Crawford G, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Fullard J, Galani K, Galeev T, Gaynor S, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Haroutunian V, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Hoffman G, Huang Y, Huuki-Myers L, Hwang A, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kellis M, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollen A, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Roussos P, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Voloudakis G, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Cross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain. Science 2024, 384: eadh0829. PMID: 38781368, DOI: 10.1126/science.adh0829.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesGenome-wide association study lociSplicing quantitative trait lociQuantitative trait lociSplicing regulationCross-ancestryTrait lociAssociation studiesRegulatory elementsCellular contextHuman brainTranscriptome regulationCoexpression networkRisk genesAutism spectrum disorderGenesCellular heterogeneityComprehensive landscapeSpectrum disorderIsoformsSplicingIncreased cellular heterogeneityLociNeuronal maturationRegulation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply