Deep learning analysis of fMRI data for predicting Alzheimer’s Disease: A focus on convolutional neural networks and model interpretability
Zhou X, Kedia S, Meng R, Gerstein M. Deep learning analysis of fMRI data for predicting Alzheimer’s Disease: A focus on convolutional neural networks and model interpretability. PLOS ONE 2024, 19: e0312848. PMID: 39630834, PMCID: PMC11616848, DOI: 10.1371/journal.pone.0312848.Peer-Reviewed Original ResearchConceptsConvolutional neural networkNeural networkAlzheimer's diseaseConvolutional neural network modelMultimodal medical datasetsDeep learning methodsPotential of deep learningGenetic risk factorsMedical datasetsAlzheimer's Disease Neuroimaging InitiativeAD predictionDeep learningDeep learning analysisLearning methodsMedical imagesPredicting Alzheimer's diseaseDetection of Alzheimer's diseaseModel interpretationEarly detection of Alzheimer's diseaseAccuracy levelGenetic factorsDatasetEarly detection of ADNetworkDetection of ADLeveraging a large language model to predict protein phase transition: A physical, multiscale, and interpretable approach
Frank M, Ni P, Jensen M, Gerstein M. Leveraging a large language model to predict protein phase transition: A physical, multiscale, and interpretable approach. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2320510121. PMID: 39110734, PMCID: PMC11331094, DOI: 10.1073/pnas.2320510121.Peer-Reviewed Original ResearchConceptsProtein phase transitionsAssociated with reduced gene expressionProtein structure predictionAlzheimer's disease-related proteinsDisease-related proteinsAlzheimer's diseaseProtein sequencesSequence variantsStructure predictionAmyloid aggregatesProtein designGene expressionAge-related diseasesNatural defense mechanismsSoluble stateProteinDefense mechanismsBiophysical featuresAlzheimerSequenceAmyloidVariantsExpressionLanguage modelComputational framework
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply