2022
Native Planar Asymmetric Suspended Membrane for Single‐Molecule Investigations: Plasma Membrane on a Chip
Sundaram R, Bera M, Coleman J, Weerakkody J, Krishnakumar S, Ramakrishnan S. Native Planar Asymmetric Suspended Membrane for Single‐Molecule Investigations: Plasma Membrane on a Chip. Small 2022, 18: e2205567. PMID: 36328714, DOI: 10.1002/smll.202205567.Peer-Reviewed Original ResearchConceptsPlasma membraneProtein assembliesNative plasma membrane vesiclesTotal internal reflection fluorescence microscopySingle-molecule levelSingle-molecule investigationsCellular plasma membranePlasma membrane vesiclesSingle-molecule precisionReflection fluorescence microscopyKnowledge of lipidProtein complexesProtein architectureCell signalingMovement of moleculesProtein orientationLipid membranesBiological processesCellular membranesMembrane vesiclesMicroarray platformFluorescence investigationsLipid domainsFluorescence microscopyMembraneMolecular determinants of complexin clamping and activation function
Bera M, Ramakrishnan S, Coleman J, Krishnakumar SS, Rothman JE. Molecular determinants of complexin clamping and activation function. ELife 2022, 11: e71938. PMID: 35442188, PMCID: PMC9020821, DOI: 10.7554/elife.71938.Peer-Reviewed Original ResearchConceptsSynaptotagmin-1Single-vesicle fusionAccessory helixFusion clampHelical domainMolecular detailsComplexinMutational analysisVesicle releaseFusion kineticsMolecular determinantsSpecific interactionsInhibitory functionProbability of fusionRapid CaSNAREpinsAssembly processFusionClamping functionDomainHelixVesiclesFunctionMembraneInteractionNative Planar Asymmetric Suspended Membrane for Single‐Molecule Investigations: Plasma Membrane on a Chip (Small 51/2022)
Sundaram R, Bera M, Coleman J, Weerakkody J, Krishnakumar S, Ramakrishnan S. Native Planar Asymmetric Suspended Membrane for Single‐Molecule Investigations: Plasma Membrane on a Chip (Small 51/2022). Small 2022, 18 DOI: 10.1002/smll.202270277.Peer-Reviewed Original ResearchGiant plasma membrane vesiclesTotal internal reflection fluorescence microscopyMembrane protein assemblyPlasma membrane vesiclesReflection fluorescence microscopyDifferent cell typesSingle-molecule investigationsProtein functionProtein assembliesInner leafletPlasma membraneMembrane vesiclesCell typesLipid architectureFluorescence microscopyLipid membranesMolecule investigationsMembraneSilicon-based platformVesiclesAssemblyCellsBilayersLeaflets
2023
Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery
Sundaram R, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst A, Gupta K, Rothman J, Krishnakumar S. Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2309516120. PMID: 37590407, PMCID: PMC10450444, DOI: 10.1073/pnas.2309516120.Peer-Reviewed Original ResearchConceptsCore protein machineryRelease-ready vesiclesSynaptic vesicle primingVesicle primingProtein machinerySingle-molecule imagingSNAREpin assemblyFunctional intermediatesFunctional reconstitutionMunc13DiacylglycerolCoordinated actionMunc18VesiclesMachineryComplete reconstitutionNew roleSelective effectDetailed characterizationChaperonesRate of caReconstitutionVAMP2ComplexinMutationsSynaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle
Bera M, Radhakrishnan A, Coleman J, Sundaram R, Ramakrishnan S, Pincet F, Rothman J. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2311484120. PMID: 37903271, PMCID: PMC10636311, DOI: 10.1073/pnas.2311484120.Peer-Reviewed Original ResearchConceptsSpecific molecular functionsSynaptic vesicle protein synaptophysinTarget membrane bilayerSensor synaptotagminSNARE proteinsMolecular functionsMembrane proteinsSNAREpinsReceptor vesiclesSingle-molecule measurementsGene knockoutMembrane bilayerLipid bilayersProtein synaptophysinVesiclesDetergent extractsHexamer structureSYPMechanism of actionProteinAssemblyChaperonesSynaptotagminExocytosisBilayersRapid Quantification of First and Second Phase Insulin Secretion Dynamics using an In vitro Platform for Improving Insulin Therapy
Thoduvayil S, Weerakkody J, Sundaram R, Topper M, Bera M, Coleman J, Li X, Mariappan M, Ramakrishnan S. Rapid Quantification of First and Second Phase Insulin Secretion Dynamics using an In vitro Platform for Improving Insulin Therapy. Cell Calcium 2023, 113: 102766. PMID: 37295201, PMCID: PMC10450995, DOI: 10.1016/j.ceca.2023.102766.Peer-Reviewed Original ResearchConceptsCellular pathwaysSecretion dynamicsSmall molecule screeningLuciferase reporter systemInsulin secretion dynamicsHigh-throughput compoundInsulin secretionHigh-throughput quantificationReporter systemGenetic studiesLive cellsDistinct rolesInsulin therapyGlucose-stimulated insulin secretionSmall moleculesEffective insulin therapyPathwaySecretion
2020
Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis
Ramakrishnan S, Bera M, Coleman J, Rothman JE, Krishnakumar SS. Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis. ELife 2020, 9: e54506. PMID: 32401194, PMCID: PMC7220375, DOI: 10.7554/elife.54506.Peer-Reviewed Original ResearchConceptsSynaptotagmin-1Vesicular fusion machinerySingle-vesicle fusionFusion of vesiclesSNARE complexFusion machineryNeuronal exocytosisOligomer bindsRegulatory proteinsVesicle fusionSNAREpinsSynchronous fusionSynaptic vesiclesNovel mechanismVesiclesComplexinKinetic delayPrimary interfaceSynergistic roleFusionExocytosisMachineryProteinBindsMechanismDissecting the Synergistic Roles of Synaptotagmin and Complexin in Ca2+-Regulated Exocytosis
Ramakrishnan S, Bera M, Coleman J, Pincet F, Rothman J, Krishnakumar S. Dissecting the Synergistic Roles of Synaptotagmin and Complexin in Ca2+-Regulated Exocytosis. Biophysical Journal 2020, 118: 488a. DOI: 10.1016/j.bpj.2019.11.2702.Peer-Reviewed Original Research
2019
Synaptotagmin oligomers are necessary and can be sufficient to form a Ca2+‐sensitive fusion clamp
Ramakrishnan S, Bera M, Coleman J, Krishnakumar SS, Pincet F, Rothman JE. Synaptotagmin oligomers are necessary and can be sufficient to form a Ca2+‐sensitive fusion clamp. FEBS Letters 2019, 593: 154-162. PMID: 30570144, PMCID: PMC6349546, DOI: 10.1002/1873-3468.13317.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply