2022
The evolving privacy and security concerns for genomic data analysis and sharing as observed from the iDASH competition
Kuo T, Jiang X, Tang H, Wang X, Harmanci A, Kim M, Post K, Bu D, Bath T, Kim J, Liu W, Chen H, Ohno-Machado L. The evolving privacy and security concerns for genomic data analysis and sharing as observed from the iDASH competition. Journal Of The American Medical Informatics Association 2022, 29: 2182-2190. PMID: 36164820, PMCID: PMC9667175, DOI: 10.1093/jamia/ocac165.Peer-Reviewed Original ResearchConceptsSensitive personal informationGenomic data analysisPotential future research directionsPersonal informationSecurity concernsGenomics data repositoryData repositoryReport lessonsProtection techniquesFuture research directionsPrivacyResearch directionsData usePractical challengesGenomic dataData analysisAnonymizationCommunity effortsRepositorySecurityBiomedical researchInformationDataChallenges
2021
Ultrafast homomorphic encryption models enable secure outsourcing of genotype imputation
Kim M, Harmanci A, Bossuat J, Carpov S, Cheon J, Chillotti I, Cho W, Froelicher D, Gama N, Georgieva M, Hong S, Hubaux J, Kim D, Lauter K, Ma Y, Ohno-Machado L, Sofia H, Son Y, Song Y, Troncoso-Pastoriza J, Jiang X. Ultrafast homomorphic encryption models enable secure outsourcing of genotype imputation. Cell Systems 2021, 12: 1108-1120.e4. PMID: 34464590, PMCID: PMC9898842, DOI: 10.1016/j.cels.2021.07.010.Peer-Reviewed Original ResearchConceptsHomomorphic encryption techniqueResource-intensive computationsSecure outsourcingGenomic data analysisData securityEncryption modelEncryption techniquePrivacy concernsSource codeMemory requirementsGenetic data analysisData analysisComparable accuracyFundamental stepGenotype imputationImputationDownloadSecurityOutsourcingComputationCodeServicesRequirementsAccuracyMethod