2024
Early antiviral use and supplemental oxygen decrease the risk of secondary bacterial infections: a multi-centre, nested, case–control study
Zhu Y, Hu H, Guo X, Zhang H, Li D, Dela Cruz C, Xie W, Xie L, Sharma L, Chang D. Early antiviral use and supplemental oxygen decrease the risk of secondary bacterial infections: a multi-centre, nested, case–control study. Journal Of Hospital Infection 2024, 156: 87-95. PMID: 39701496, DOI: 10.1016/j.jhin.2024.12.005.Peer-Reviewed Original ResearchConceptsRisk of secondary bacterial infectionIncidence of secondary bacterial infectionSecondary bacterial infectionAge-adjusted Charlson Comorbidity IndexCase-control studyPropensity-score matchingBacterial infectionsCOVID-19 patientsParenteral nutritionSupplemental oxygenTreatment strategiesAssociated with significant protectionAssociated with decreased incidenceAssociated with increased incidenceConditional logistic regression analysisSusceptibility to secondary bacterial infectionsAssociated with protectionCharlson Comorbidity IndexLogistic regression analysisAssociated with significant increasesAntiviral useGastric tubeAntibacterial therapyComorbidity indexIntravenous injection
2023
Pathophysiology and clinical management of coronavirus disease (COVID-19): a mini-review
Zhu Y, Sharma L, Chang D. Pathophysiology and clinical management of coronavirus disease (COVID-19): a mini-review. Frontiers In Immunology 2023, 14: 1116131. PMID: 37646038, PMCID: PMC10461092, DOI: 10.3389/fimmu.2023.1116131.Peer-Reviewed Original ResearchConceptsClinical managementAppropriate host immune responseSevere acute pneumoniaMultiple organ failureCOVID-19 pathogenesisSecondary bacterial infectionLower respiratory systemSpecific pathogenic mechanismsHost immune responseLife-threatening consequencesCOVID-19SARS-CoV-2Spread of infectionOrgan failureAcute pneumoniaExcessive inflammationInfected subjectsSystemic diseaseProtease TMPRSS2Mild infectionImmune responseHealthcare threatPathogenic mechanismsTherapeutic paradigmBacterial infections
2022
Coronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction.
Peng X, Kim J, Gupta G, Agaronyan K, Mankowski MC, Korde A, Takyar SS, Shin HJ, Habet V, Voth S, Audia JP, Chang D, Liu X, Wang L, Cai Y, Tian X, Ishibe S, Kang MJ, Compton S, Wilen CB, Dela Cruz CS, Sharma L. Coronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction. The Journal Of Immunology 2022, 209: 1314-1322. PMID: 36165196, PMCID: PMC9523490, DOI: 10.4049/jimmunol.2200198.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Bacterial infectionsMouse modelCoronavirus infectionLysosomal dysfunctionMajor health care challengeLung immune cellsLung tissue damageSecondary bacterial infectionImpair host immunityIL-1β releaseHealth care challengesCell deathPyroptotic cell deathBacterial killing abilityIL-1βBacterial clearanceImmune cellsSecondary infectionHost immunityAlveolar macrophagesTissue damageΒ-coronavirusStructural cellsCare challenges
2020
Severe respiratory viral infection induces procalcitonin in the absence of bacterial pneumonia
Gautam S, Cohen AJ, Stahl Y, Toro P, Young GM, Datta R, Yan X, Ristic NT, Bermejo SD, Sharma L, Restrepo M, Dela Cruz CS. Severe respiratory viral infection induces procalcitonin in the absence of bacterial pneumonia. Thorax 2020, 75: 974-981. PMID: 32826284, DOI: 10.1136/thoraxjnl-2020-214896.Peer-Reviewed Original ResearchConceptsPure viral infectionBacterial coinfectionViral infectionInfluenza infectionSevere respiratory viral infectionsAbility of procalcitoninRetrospective cohort studyViral respiratory infectionsRespiratory viral infectionsMarker of severityRespiratory viral illnessSevere viral infectionsSpecificity of procalcitoninCharacteristic curve analysisCellular modelHigher procalcitoninProcalcitonin expressionElevated procalcitoninCohort studyViral illnessRespiratory infectionsAntibiotic administrationBacterial pneumoniaSevere diseaseProcalcitonin
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply