2025
Dysregulation of mTOR signalling is a converging mechanism in lissencephaly
Zhang C, Liang D, Ercan-Sencicek A, Bulut A, Cortes J, Cheng I, Henegariu O, Nishimura S, Wang X, Peksen A, Takeo Y, Caglar C, Lam T, Koroglu M, Narayanan A, Lopez-Giraldez F, Miyagishima D, Mishra-Gorur K, Barak T, Yasuno K, Erson-Omay E, Yalcinkaya C, Wang G, Mane S, Kaymakcalan H, Guzel A, Caglayan A, Tuysuz B, Sestan N, Gunel M, Louvi A, Bilguvar K. Dysregulation of mTOR signalling is a converging mechanism in lissencephaly. Nature 2025, 638: 172-181. PMID: 39743596, PMCID: PMC11798849, DOI: 10.1038/s41586-024-08341-9.Peer-Reviewed Original ResearchP53-induced death domain protein 1Miller-Dieker lissencephaly syndromeMolecular mechanismsDysregulation of protein translationDysregulation of mTOR signalingDomain protein 1Activity of mTOR complexesMTOR pathwayRelevant molecular mechanismsProtein translationHuman lissencephalyClinically relevant molecular mechanismsRecessive mutationsRare mutationsMiller-DiekerGene expressionCerebral cortex developmentMTOR complexesSpectrum disorderMolecular defectsMTOR signalingCongenital brain malformationsProtein 1GeneticsAssociated with epilepsy
2023
Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas
Youngblood M, Erson-Omay Z, Li C, Najem H, Coșkun S, Tyrtova E, Montejo J, Miyagishima D, Barak T, Nishimura S, Harmancı A, Clark V, Duran D, Huttner A, Avşar T, Bayri Y, Schramm J, Boetto J, Peyre M, Riche M, Goldbrunner R, Amankulor N, Louvi A, Bilgüvar K, Pamir M, Özduman K, Kilic T, Knight J, Simon M, Horbinski C, Kalamarides M, Timmer M, Heimberger A, Mishra-Gorur K, Moliterno J, Yasuno K, Günel M. Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas. Nature Communications 2023, 14: 6279. PMID: 37805627, PMCID: PMC10560290, DOI: 10.1038/s41467-023-41926-y.Peer-Reviewed Original Research
2021
PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nature Medicine 2021, 27: 2165-2175. PMID: 34887573, PMCID: PMC8768030, DOI: 10.1038/s41591-021-01572-7.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesPeptidyl-prolyl cis-transPathogenesis of IAContribution of variantsCommon genetic variantsVertebrate modelDeleterious mutationsWnt activatorAssociation studiesWhole-exome sequencingSignificant enrichmentGenetic variantsWntAngiogenesis regulatorsMutationsGene mutationsBrain angiogenesisIntracranial aneurysm ruptureJMJD6AngiogenesisCerebrovascular morphologyCerebrovascular integrityIntracerebral hemorrhageAneurysm ruptureVariants
2020
Associations of meningioma molecular subgroup and tumor recurrence
Youngblood MW, Miyagishima DF, Jin L, Gupte T, Li C, Duran D, Montejo JD, Zhao A, Sheth A, Tyrtova E, Ă–zduman K, Iacoangeli F, Peyre M, Boetto J, Pease M, AvĹźar T, Huttner A, Bilguvar K, Kilic T, Pamir MN, Amankulor N, Kalamarides M, Erson-Omay EZ, GĂĽnel M, Moliterno J. Associations of meningioma molecular subgroup and tumor recurrence. Neuro-Oncology 2020, 23: 783-794. PMID: 33068421, PMCID: PMC8099468, DOI: 10.1093/neuonc/noaa226.Peer-Reviewed Original ResearchConceptsDivergent clinical coursesMolecular subgroupsClinical courseClinical outcomesProgression-free survivalExtent of resectionKaplan-Meier analysisLong-term outcomesLow-grade tumorsCox proportional hazardsDistinct clinical outcomesPostoperative radiationIndependent predictorsMale sexRecurrence rateSurveillance imagingTumor recurrencePrevious recurrencesClinical prognosticationKi-67Outcome dataAggressive subgroupRecurrenceElevated recurrenceProportional hazardsMETAP1 mutation is a novel candidate for autosomal recessive intellectual disability
Caglayan AO, Aktar F, Bilguvar K, Baranoski JF, Akgumus GT, Harmanci AS, Erson-Omay EZ, Yasuno K, Caksen H, Gunel M. METAP1 mutation is a novel candidate for autosomal recessive intellectual disability. Journal Of Human Genetics 2020, 66: 215-218. PMID: 32764695, PMCID: PMC7785574, DOI: 10.1038/s10038-020-0820-0.Peer-Reviewed Original ResearchConceptsEssential proteinsAutosomal recessive intellectual disabilityRecessive intellectual disabilityMethionine aminopeptidase 1Genomic analysisHomozygous nonsense mutationFunction mutationsNovel homozygous nonsense mutationNonsense mutationAminopeptidase 1Novel candidatesNeuronal functionMutationsMolecular pathogenesisProteinIntellectual disabilityGenome testingEukaryotesNovel etiologyMetAP1GenesNeurologic impairmentCommon diseasePathwayCells
2019
Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas.
Youngblood MW, Duran D, Montejo JD, Li C, Omay SB, Ă–zduman K, Sheth AH, Zhao AY, Tyrtova E, Miyagishima DF, Fomchenko EI, Hong CS, Clark VE, Riche M, Peyre M, Boetto J, Sohrabi S, Koljaka S, Baranoski JF, Knight J, Zhu H, Pamir MN, AvĹźar T, Kilic T, Schramm J, Timmer M, Goldbrunner R, Gong Y, Bayri Y, Amankulor N, Hamilton RL, Bilguvar K, Tikhonova I, Tomak PR, Huttner A, Simon M, Krischek B, Kalamarides M, Erson-Omay EZ, Moliterno J, GĂĽnel M. Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas. Journal Of Neurosurgery 2019, 133: 1345-1354. PMID: 31653806, DOI: 10.3171/2019.8.jns191266.Peer-Reviewed Original ResearchClinical featuresGenomic subgroupsExact testAnterior skull base regionElevated Ki-67 indexLarge peritumoral brain edemaPeritumoral brain edemaKi-67 indexModerate predictive valueFisher's exact testRelevant clinical informationMicrocystic featuresNF2 meningiomasInvasive sampling proceduresMale patientsBrain edemaFemale sexTumor locationPatient variablesDiscovery cohortSkull base regionMidline locationPatient featuresClinical informationPredictive value
2018
Correction: Author Correction: Integrated genomic analyses of de novo pathways underlying atypical meningiomas
Harmancı AS, Youngblood MW, Clark VE, Coşkun S, Henegariu O, Duran D, Erson-Omay EZ, Kaulen LD, Lee TI, Abraham BJ, Simon M, Krischek B, Timmer M, Goldbrunner R, Omay SB, Baranoski J, Baran B, Carrión-Grant G, Bai H, Mishra-Gorur K, Schramm J, Moliterno J, Vortmeyer AO, Bilgüvar K, Yasuno K, Young RA, Günel M. Correction: Author Correction: Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications 2018, 9: 16215. PMID: 29676392, PMCID: PMC5919704, DOI: 10.1038/ncomms16215.Peer-Reviewed Original Research
2017
Integrated genomic analyses of de novo pathways underlying atypical meningiomas
Harmancı AS, Youngblood MW, Clark VE, Coşkun S, Henegariu O, Duran D, Erson-Omay EZ, Kaulen LD, Lee TI, Abraham BJ, Simon M, Krischek B, Timmer M, Goldbrunner R, Omay SB, Baranoski J, Baran B, Carrión-Grant G, Bai H, Mishra-Gorur K, Schramm J, Moliterno J, Vortmeyer AO, Bilgüvar K, Yasuno K, Young RA, Günel M. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications 2017, 8: 14433. PMID: 28195122, PMCID: PMC5316884, DOI: 10.1038/ncomms14433.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesBrain NeoplasmsCell Transformation, NeoplasticChromosomal InstabilityCluster AnalysisDNA MethylationE2F2 Transcription FactorEnhancer of Zeste Homolog 2 ProteinEpigenomicsExomeForkhead Box Protein M1Gene Expression ProfilingGene Expression Regulation, NeoplasticGene Regulatory NetworksGene SilencingGenes, Neurofibromatosis 2GenomeGenomicsGenotyping TechniquesHuman Embryonic Stem CellsHumansJumonji Domain-Containing Histone DemethylasesMeningeal NeoplasmsMeningiomaMolecular Probe TechniquesMutationPhenotypePolycomb Repressive Complex 2Promoter Regions, GeneticRNA, MessengerSequence AnalysisSignal TransductionSMARCB1 ProteinTranscriptomeConceptsPolycomb repressive complex 2Human embryonic stem cellsRepressive complex 2Integrated genomic analysisEmbryonic stem cellsDe novo pathwayH3K27me3 signalsTranscriptional networksPRC2 complexEpigenomic analysisCellular statesCatalytic subunitGenomic analysisGenomic instabilityHypermethylated phenotypeGenomic landscapeNovo pathwayDisplay lossStem cellsPotential therapeutic targetExhibit upregulationPromoter mutationsTherapeutic targetMutationsComplexes 2Longitudinal analysis of treatment-induced genomic alterations in gliomas
Erson-Omay EZ, Henegariu O, Omay SB, Harmancı AS, Youngblood MW, Mishra-Gorur K, Li J, Özduman K, Carrión-Grant G, Clark VE, Çağlar C, Bakırcıoğlu M, Pamir MN, Tabar V, Vortmeyer AO, Bilguvar K, Yasuno K, DeAngelis LM, Baehring JM, Moliterno J, Günel M. Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Medicine 2017, 9: 12. PMID: 28153049, PMCID: PMC5290635, DOI: 10.1186/s13073-017-0401-9.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsChromosome AberrationsCombined Modality TherapyDisease ProgressionDNA Mismatch RepairDNA Mutational AnalysisDNA, NeoplasmExomeFemaleGeneral SurgeryGenome, HumanGenomicsGlioblastomaHumansImmunotherapyLongitudinal StudiesMiddle AgedMutationNeoplasm Recurrence, LocalPrecision MedicineRadiotherapyTreatment OutcomeConceptsWhole-exome sequencingMismatch repair deficiencyImmune checkpoint inhibitionMalignant brain tumorsMolecular changesLongitudinal analysisMedian survivalCheckpoint inhibitionSubsequent recurrenceMaximal resectionStandard treatmentBackgroundGlioblastoma multiformeBrain tumorsTumor-normal pairsFavorable responsePrimary GBMIndividual tumorsConclusionsOur studyPrecision therapyPersonalized treatmentGenomic profilingRepair deficiencyGenomic alterationsGenomic profilesTherapy
2016
Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas
Clark VE, Harmancı AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, Ercan-Sencicek AG, Abraham BJ, Weintraub AS, Hnisz D, Simon M, Krischek B, Erson-Omay EZ, Henegariu O, Carrión-Grant G, Mishra-Gorur K, Durán D, Goldmann JE, Schramm J, Goldbrunner R, Piepmeier JM, Vortmeyer AO, Günel JM, Bilgüvar K, Yasuno K, Young RA, Günel M. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nature Genetics 2016, 48: 1253-1259. PMID: 27548314, PMCID: PMC5114141, DOI: 10.1038/ng.3651.Peer-Reviewed Original ResearchCatalytic DomainChromosomes, Human, Pair 22Cohort StudiesDNA Mutational AnalysisEnhancer Elements, GeneticExomeGene Expression Regulation, NeoplasticGenotypeHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMeningeal NeoplasmsMeningiomaMutationNeurofibromin 2RNA Polymerase IITumor Necrosis Factor Receptor-Associated Peptides and ProteinsBiallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly
Li H, Bielas SL, Zaki MS, Ismail S, Farfara D, Um K, Rosti RO, Scott EC, Tu S, C. NC, Gabriel S, Erson-Omay EZ, Ercan-Sencicek AG, Yasuno K, Çağlayan AO, Kaymakçalan H, Ekici B, Bilguvar K, Gunel M, Gleeson JG. Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly. American Journal Of Human Genetics 2016, 99: 501-510. PMID: 27453578, PMCID: PMC4974110, DOI: 10.1016/j.ajhg.2016.07.004.Peer-Reviewed Original ResearchConceptsInduced pluripotent stem cellsPrimary microcephalyHuman primary microcephalyAutosomal recessive primary microcephalyNon-progressive intellectual disabilityAmino acid residuesPluripotent stem cellsMitotic cytokinesisCellular functionsGenome editingCell divisionKinase domainAbnormal cytokinesisCRISPR/Homozygous missense mutationCytokinesisKinase activityMultipolar spindlesNeural progenitorsAcid residuesFunction mutationsMissense mutationsStem cellsMultiple rolesMutationsA patient with a novel homozygous missense mutation in FTO and concomitant nonsense mutation in CETP
Çağlayan AO, Tüysüz B, Coşkun S, Quon J, Harmancı AS, Baranoski JF, Baran B, Erson-Omay EZ, Henegariu O, Mane SM, Bilgüvar K, Yasuno K, Günel M. A patient with a novel homozygous missense mutation in FTO and concomitant nonsense mutation in CETP. Journal Of Human Genetics 2016, 61: 395-403. PMID: 26740239, PMCID: PMC4880488, DOI: 10.1038/jhg.2015.160.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Ketoglutarate-Dependent Dioxygenase FTOApoptosisBiopsyChild, PreschoolCholesterol Ester Transfer ProteinsComputational BiologyConsanguinityDNA Copy Number VariationsDNA Mutational AnalysisExomeFemaleGene ExpressionGene Expression ProfilingGenetic Association StudiesGenotypeHigh-Throughput Nucleotide SequencingHomozygoteHumansMutation, MissensePhenotypeTranscriptome
2015
Integrated genomic characterization of IDH1-mutant glioma malignant progression
Bai H, Harmancı AS, Erson-Omay EZ, Li J, Coşkun S, Simon M, Krischek B, Özduman K, Omay SB, Sorensen EA, Turcan Ş, Bakırcığlu M, Carrión-Grant G, Murray PB, Clark VE, Ercan-Sencicek AG, Knight J, Sencar L, Altınok S, Kaulen LD, Gülez B, Timmer M, Schramm J, Mishra-Gorur K, Henegariu O, Moliterno J, Louvi A, Chan TA, Tannheimer SL, Pamir MN, Vortmeyer AO, Bilguvar K, Yasuno K, Günel M. Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nature Genetics 2015, 48: 59-66. PMID: 26618343, PMCID: PMC4829945, DOI: 10.1038/ng.3457.Peer-Reviewed Original ResearchConceptsDevelopmental transcription factorsActivation of MYCMalignant progressionGenomic approachesPI3K pathwayGlioma malignant progressionEpigenetic silencingIDH1 mutant gliomasTranscription factorsIntegrated genomic characterizationGenomic characterizationRTK-RASOncogenic pathwaysK pathwayClonal expansionPathwaySilencingMYCProgressionSomatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis
Erson-Omay EZ, Çağlayan AO, Schultz N, Weinhold N, Omay SB, Özduman K, Köksal Y, Li J, Serin Harmancı A, Clark V, Carrión-Grant G, Baranoski J, Çağlar C, Barak T, Coşkun S, Baran B, Köse D, Sun J, Bakırcıoğlu M, Moliterno Günel J, Pamir MN, Mishra-Gorur K, Bilguvar K, Yasuno K, Vortmeyer A, Huttner AJ, Sander C, Günel M. Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro-Oncology 2015, 17: 1356-1364. PMID: 25740784, PMCID: PMC4578578, DOI: 10.1093/neuonc/nov027.Peer-Reviewed Original ResearchConceptsHigh-grade gliomasSomatic POLE mutationsPOLE mutationsMalignant high-grade gliomasLonger progression-free survivalProgression-free survivalSomatic mutationsOverall survivalPediatric patientsBetter prognosisClinical featuresImproved prognosisClinical behaviorImmune cellsBizarre cellsAggressive formGlioblastoma multiformeDisease pathophysiologyMolecular subgroupsHomozygous germline mutationGermline mutationsPrognosisGlioma subtypesComprehensive genomic analysisDistinct subgroupsMutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors
Mishra-Gorur K, Çağlayan AO, Schaffer AE, Chabu C, Henegariu O, Vonhoff F, Akgümüş GT, Nishimura S, Han W, Tu S, Baran B, Gümüş H, Dilber C, Zaki MS, Hossni HAA, Rivière JB, Kayserili H, Spencer EG, Rosti RÖ, Schroth J, Per H, Çağlar C, Çağlar Ç, Dölen D, Baranoski JF, Kumandaş S, Minja FJ, Erson-Omay EZ, Mane SM, Lifton RP, Xu T, Keshishian H, Dobyns WB, C. NC, Šestan N, Louvi A, Bilgüvar K, Yasuno K, Gleeson JG, Günel M. Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron 2015, 85: 228. PMID: 29654772, DOI: 10.1016/j.neuron.2014.12.046.Peer-Reviewed Original Research
2014
Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors
Mishra-Gorur K, Çağlayan AO, Schaffer AE, Chabu C, Henegariu O, Vonhoff F, Akgümüş GT, Nishimura S, Han W, Tu S, Baran B, Gümüş H, Dilber C, Zaki MS, Hossni HA, Rivière JB, Kayserili H, Spencer EG, Rosti RÖ, Schroth J, Per H, Çağlar C, Çağlar Ç, Dölen D, Baranoski JF, Kumandaş S, Minja FJ, Erson-Omay EZ, Mane SM, Lifton RP, Xu T, Keshishian H, Dobyns WB, C. N, Šestan N, Louvi A, Bilgüvar K, Yasuno K, Gleeson JG, Günel M. Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron 2014, 84: 1226-1239. PMID: 25521378, PMCID: PMC5024344, DOI: 10.1016/j.neuron.2014.12.014.Peer-Reviewed Original ResearchConceptsComplex cerebral malformationsCerebral cortical malformationsMicrotubule-severing enzyme kataninExome sequencing analysisMitotic spindle formationDrosophila optic lobeCerebral malformationsPatient-derived fibroblastsCell cycle progression delayCortical malformationsMotor neuronsComplex malformationsMicrotubule-associated proteinsCortical developmentReduced cell numberOptic lobeRegulatory subunitBrain developmentCatalytic subunitDeleterious mutationsSpindle formationSupernumerary centrosomesArborization defectsMalformationsHuman phenotypesNGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy
Caglayan AO, Comu S, Baranoski JF, Parman Y, Kaymakçalan H, Akgumus GT, Caglar C, Dolen D, Erson-Omay EZ, Harmanci AS, Mishra-Gorur K, Freeze HH, Yasuno K, Bilguvar K, Gunel M. NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy. European Journal Of Medical Genetics 2014, 58: 39-43. PMID: 25220016, PMCID: PMC4804755, DOI: 10.1016/j.ejmg.2014.08.008.Peer-Reviewed Original ResearchConceptsN-glycanase 1Proteasome-mediated degradationConserved enzymeFrame-shift mutationApparent intellectual disabilityBase pair deletionNeuromotor impairmentNovel homozygous frame-shift mutationHomozygous frame-shift mutationNeuronal cellsPair deletionAmyotrophic lateral sclerosisIntellectual disabilityMutationsProteinNeurological functionCorneal opacityNeurologic diseaseLateral sclerosisParkinson's diseaseProgressive lossDiseaseCytoplasmImpairmentDeletionBrain Malformations Associated With Knobloch Syndrome—Review of Literature, Expanding Clinical Spectrum, and Identification of Novel Mutations
Caglayan AO, Baranoski JF, Aktar F, Han W, Tuysuz B, Guzel A, Guclu B, Kaymakcalan H, Aktekin B, Akgumus GT, Murray PB, Erson-Omay EZ, Caglar C, Bakircioglu M, Sakalar YB, Guzel E, Demir N, Tuncer O, Senturk S, Ekici B, Minja FJ, Šestan N, Yasuno K, Bilguvar K, Caksen H, Gunel M. Brain Malformations Associated With Knobloch Syndrome—Review of Literature, Expanding Clinical Spectrum, and Identification of Novel Mutations. Pediatric Neurology 2014, 51: 806-813.e8. PMID: 25456301, PMCID: PMC5056964, DOI: 10.1016/j.pediatrneurol.2014.08.025.Peer-Reviewed Original ResearchConceptsBrain malformationsKnobloch syndromeCentral nervous system malformationsExpanding Clinical SpectrumStructural brain abnormalitiesStructural brain malformationsNervous system malformationsHuman cerebral cortexHuman cortical developmentWhole-exome sequencingConfirmatory Sanger sequencingCase seriesClinical presentationCerebral cortexClinical spectrumBrain abnormalitiesOcular abnormalitiesSystem malformationsClinical utilityCortical developmentImmunohistochemical analysisRare diseaseCOL18A1 mutationsBrain developmentPatientsPaediatric hepatocellular carcinoma due to somatic CTNNB1 and NFE2L2 mutations in the setting of inherited bi-allelic ABCB11 mutations
Vilarinho S, Erson-Omay EZ, Harmanci AS, Morotti R, Carrion-Grant G, Baranoski J, Knisely AS, Ekong U, Emre S, Yasuno K, Bilguvar K, GĂĽnel M. Paediatric hepatocellular carcinoma due to somatic CTNNB1 and NFE2L2 mutations in the setting of inherited bi-allelic ABCB11 mutations. Journal Of Hepatology 2014, 61: 1178-1183. PMID: 25016225, DOI: 10.1016/j.jhep.2014.07.003.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceATP Binding Cassette Transporter, Subfamily B, Member 11ATP-Binding Cassette TransportersBase Sequencebeta CateninCarcinoma, HepatocellularCholestasis, IntrahepaticDNA, NeoplasmFemaleGerm-Line MutationHumansInfantLiver NeoplasmsMolecular Sequence DataMutationMutation, MissenseNF-E2-Related Factor 2Sequence Homology, Amino AcidConceptsBile salt export pumpWhole-exome sequencingHepatocellular carcinomaMonths of ageNFE2L2 mutationsABCB11 mutationsSomatic CTNNB1Background liver parenchymaPediatric hepatocellular carcinomaNew onsetSomatic driver mutationsBSEP expressionLiver parenchymaHCC tissuesHepatocellular carcinogenesisWES analysisExport pumpDriver mutationsCTNNB1 mutationsExome sequencingChild's diagnosisClonality analysisGermline DNAPossible genetic basisEarly childhood
2013
Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO
Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Özduman K, Avşar T, Li J, Murray PB, Henegariu O, Yilmaz S, Günel JM, Carrión-Grant G, Yılmaz B, Grady C, Tanrıkulu B, Bakırcıoğlu M, Kaymakçalan H, Caglayan AO, Sencar L, Ceyhun E, Atik AF, Bayri Y, Bai H, Kolb LE, Hebert RM, Omay SB, Mishra-Gorur K, Choi M, Overton JD, Holland EC, Mane S, State MW, Bilgüvar K, Baehring JM, Gutin PH, Piepmeier JM, Vortmeyer A, Brennan CW, Pamir MN, Kılıç T, Lifton RP, Noonan JP, Yasuno K, Günel M. Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339: 1077-1080. PMID: 23348505, PMCID: PMC4808587, DOI: 10.1126/science.1233009.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overBrain NeoplasmsChromosomes, Human, Pair 22DNA Mutational AnalysisFemaleGenes, Neurofibromatosis 2Genomic InstabilityGenomicsHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMaleMeningeal NeoplasmsMeningiomaMiddle AgedMutationNeoplasm GradingProto-Oncogene Proteins c-aktReceptors, G-Protein-CoupledSmoothened ReceptorTumor Necrosis Factor Receptor-Associated Peptides and Proteins
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply