Featured Publications
Influenza vaccination reveals sex dimorphic imprints of prior mild COVID-19
Sparks R, Lau W, Liu C, Han K, Vrindten K, Sun G, Cox M, Andrews S, Bansal N, Failla L, Manischewitz J, Grubbs G, King L, Koroleva G, Leimenstoll S, Snow L, Chen J, Tang J, Mukherjee A, Sellers B, Apps R, McDermott A, Martins A, Bloch E, Golding H, Khurana S, Tsang J. Influenza vaccination reveals sex dimorphic imprints of prior mild COVID-19. Nature 2023, 614: 752-761. PMID: 36599369, PMCID: PMC10481789, DOI: 10.1038/s41586-022-05670-5.Peer-Reviewed Original ResearchConceptsMild COVID-19Control individualsInnate immune genesInfluenza vaccinationCOVID-19Day 28Day 1Viral infectionNon-hospitalized COVID-19Baseline immune statusAcute viral infectionSex-matched control individualsMemory-like CD8IL-15 responsesIL-15 stimulationSex-dimorphic effectsToll-like receptorsFuture immune responseHealthy control individualsImmune genesSystems immunology approachT-cell activation signaturesHealthy male individualsMale individualsMore IFNγBroad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus
Kotliarov Y, Sparks R, Martins A, Mulè M, Lu Y, Goswami M, Kardava L, Banchereau R, Pascual V, Biancotto A, Chen J, Schwartzberg P, Bansal N, Liu C, Cheung F, Moir S, Tsang J. Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus. Nature Medicine 2020, 26: 618-629. PMID: 32094927, PMCID: PMC8392163, DOI: 10.1038/s41591-020-0769-8.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAdolescentAdultAgedAged, 80 and overAntibody FormationB-LymphocytesChildChild, PreschoolCohort StudiesFemaleGene Expression ProfilingHumansInfluenza VaccinesInfluenza, HumanLupus Erythematosus, SystemicMaleMiddle AgedTranscriptomeVaccinationYellow FeverYellow Fever VaccineYoung AdultConceptsDisease activityVaccine responsivenessAutoimmune disease activityBlood transcriptional signaturesYellow fever vaccinationSystemic lupus erythematosusClinical quiescenceFever vaccinationLupus erythematosusCancer immunotherapyBaseline predictorsDisease outcomeHealthy subjectsImmune responseI IFNHealthy individualsVaccinationTranscriptional signatureImmune variationBaseline statePatientsExtent of activationBiological basisSurface proteinsInfection responseUtilizing population variation, vaccination, and systems biology to study human immunology
Tsang J. Utilizing population variation, vaccination, and systems biology to study human immunology. Trends In Immunology 2015, 36: 479-493. PMID: 26187853, PMCID: PMC4979540, DOI: 10.1016/j.it.2015.06.005.Peer-Reviewed Original ResearchIntegrating population and single-cell variations in vaccine responses identifies a naturally adjuvanted human immune setpoint
Mulè M, Martins A, Cheung F, Farmer R, Sellers B, Quiel J, Jain A, Kotliarov Y, Bansal N, Chen J, Schwartzberg P, Tsang J. Integrating population and single-cell variations in vaccine responses identifies a naturally adjuvanted human immune setpoint. Immunity 2024, 57: 1160-1176.e7. PMID: 38697118, DOI: 10.1016/j.immuni.2024.04.009.Peer-Reviewed Original ResearchConceptsTranscriptional statesVaccine responseSingle-cell profiling methodsSingle-cell variationAS03-adjuvanted vaccineUnadjuvanted influenza vaccineResponse to lipopolysaccharide stimulationB cell signaturesCD14<sup>+</sup> monocytesSingle-cell levelBiological insightsUnadjuvanted vaccineAS03-adjuvantedInfluenza vaccineResponse phenotypesCITE-seqInnate subsetsAdjuvant developmentHigh antibody respondersDay 1Antibody respondersLipopolysaccharide stimulationVaccineCorrelation networkHuman populationImproving Vaccine-Induced Immunity: Can Baseline Predict Outcome?
Tsang J, Dobaño C, VanDamme P, Moncunill G, Marchant A, Othman R, Sadarangani M, Koff W, Kollmann T. Improving Vaccine-Induced Immunity: Can Baseline Predict Outcome? Trends In Immunology 2020, 41: 457-465. PMID: 32340868, PMCID: PMC7142696, DOI: 10.1016/j.it.2020.04.001.Peer-Reviewed Original Research
2023
Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine
de Assis F, Hoehn K, Zhang X, Kardava L, Smith C, Merhebi O, Buckner C, Trihemasava K, Wang W, Seamon C, Chen V, Schaughency P, Cheung F, Martins A, Chiang C, Li Y, Tsang J, Chun T, Kleinstein S, Moir S. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Reports 2023, 42: 112780. PMID: 37440409, PMCID: PMC10529190, DOI: 10.1016/j.celrep.2023.112780.Peer-Reviewed Original ResearchConceptsMemory B cellsB cell receptorB cellsAtypical memory B cellsInfection-naïve individualsTwo-dose SARSSARS-CoV-2 mRNAB cell responsesAntibody-secreting cellsMonth 6Protective immunityCell responsesCell receptorClonal expansionImmunoglobulin GEarly timepointsLater timepointsPlasmablastsVaccinationCD71TimepointsSurface proteinsCellsMultimodal single-cell analysisMRNA
2022
Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses
Hagan T, Gerritsen B, Tomalin LE, Fourati S, Mulè MP, Chawla DG, Rychkov D, Henrich E, Miller HER, Diray-Arce J, Dunn P, Lee A, Levy O, Gottardo R, Sarwal M, Tsang J, Suárez-Fariñas M, Sékaly R, Kleinstein S, Pulendran B. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nature Immunology 2022, 23: 1788-1798. PMID: 36316475, PMCID: PMC9869360, DOI: 10.1038/s41590-022-01328-6.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodies, ViralAntibody FormationGene Expression ProfilingHumansImmunity, InnateVaccinationVaccinesConceptsAntibody responseDay 1Vaccine-induced antibodiesYellow fever vaccineHuman immune responseMechanisms of immunityB cell activationTranscriptional atlasFever vaccineDifferent vaccinesSystems vaccinologyImmune responseMost vaccinesDay 7Cell activationInnate immunityVaccineVaccinationImmunityCommon predictorsMolecular signaturesResponsePlasmablastsInterferonAntibodiesPan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination
Fourati S, Tomalin LE, Mulè MP, Chawla DG, Gerritsen B, Rychkov D, Henrich E, Miller HER, Hagan T, Diray-Arce J, Dunn P, Levy O, Gottardo R, Sarwal M, Tsang J, Suárez-Fariñas M, Pulendran B, Kleinstein S, Sékaly R. Pan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination. Nature Immunology 2022, 23: 1777-1787. PMID: 36316476, PMCID: PMC9747610, DOI: 10.1038/s41590-022-01329-5.Peer-Reviewed Original ResearchConceptsAntibody responsePro-inflammatory response genesToll-like receptor ligandsBlood transcriptional profilesHigher serum antibodyPro-inflammatory responseSerum antibodiesDifferent vaccinesImmune responseImmune stateMetabolism alterationsEndotypesImmune systemVaccinationReceptor ligandsCell proliferationGene expression characteristicsActivation stateDifferential expressionTranscriptional profilesResponse genesExpression characteristicsResponseWide variationAdjuvantEarly human B cell signatures of the primary antibody response to mRNA vaccination
Kardava L, Rachmaninoff N, Lau W, Buckner C, Trihemasava K, Blazkova J, de Assis F, Wang W, Zhang X, Wang Y, Chiang C, Narpala S, McCormack G, Liu C, Seamon C, Sneller M, O’Connell S, Li Y, McDermott A, Chun T, Fauci A, Tsang J, Moir S. Early human B cell signatures of the primary antibody response to mRNA vaccination. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2204607119. PMID: 35759653, PMCID: PMC9282446, DOI: 10.1073/pnas.2204607119.Peer-Reviewed Original ResearchConceptsMemory B cellsAntibody responseDose 2MBC populationsB cellsSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Durability of antibodiesSubsequent antibody levelsB cell signaturesIgG antibody responsePrimary antibody responseSyndrome coronavirus 2Weak antibody responseMessenger RNA vaccinesPlasmablast frequencyFirst doseMRNA vaccinationMonth 6Antibody levelsProtective immunitySecond dosesAntibody titersCoronavirus 2
2020
Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells
Baharom F, Ramirez-Valdez RA, Tobin KKS, Yamane H, Dutertre CA, Khalilnezhad A, Reynoso GV, Coble VL, Lynn GM, Mulè MP, Martins AJ, Finnigan JP, Zhang XM, Hamerman JA, Bhardwaj N, Tsang JS, Hickman HD, Ginhoux F, Ishizuka AS, Seder RA. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nature Immunology 2020, 22: 41-52. PMID: 33139915, PMCID: PMC7746638, DOI: 10.1038/s41590-020-00810-3.Peer-Reviewed Original ResearchConceptsNeoantigen-specific CD8T cellsToll-like receptor 7/8 agonistQuality of CD8Stem-like TCF1T cell immunityStem-like CD8Superior antitumor responsesPersonalized cancer vaccinesStem-like genesStem-like cellsIntravenous vaccinationNanoparticle vaccinationAntitumor immunityCheckpoint blockadeCell immunityDendritic cellsAntitumor responseEffector cellsSubcutaneous immunizationCancer vaccinesVaccine parametersNeoantigen peptidesAntigen presentationNanoparticle vaccineMaternal determinants of infant immunity: Implications for effective immunization and maternal-child health
Pasetti M, Ackerman M, Hoen A, Alter G, Tsang J, Marchant A. Maternal determinants of infant immunity: Implications for effective immunization and maternal-child health. Vaccine 2020, 38: 4491-4494. PMID: 32111530, PMCID: PMC9946685, DOI: 10.1016/j.vaccine.2020.01.056.Peer-Reviewed Original Research
2013
The National Institutes of Health Center for Human Immunology, Autoimmunity, and Inflammation: history and progress
Dickler H, McCoy J, Nussenblatt R, Perl S, Schwartzberg P, Tsang J, Wang E, Young N. The National Institutes of Health Center for Human Immunology, Autoimmunity, and Inflammation: history and progress. Annals Of The New York Academy Of Sciences 2013, 1285: 133-147. PMID: 23692568, DOI: 10.1111/nyas.12101.Peer-Reviewed Original ResearchConceptsHuman immunologyDepth clinical phenotypingCommon pathogenic pathwayNew therapeutic modalitiesHuman immune systemDisease progressionImmune cellsHealth centersClinical phenotypingTherapeutic modalitiesPathogenic pathwaysImmune systemNew interventionsMultiplex technologyPotential targetNational InstituteAutoimmunityInflammationEpigenetic modulationDiseaseImmunologyIntramural programsInterventionGene expressionDepth assessment
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply