1998
A Plasma Membrane Localization Signal in the HIV-1 Envelope Cytoplasmic Domain Prevents Localization at Sites of Vesicular Stomatitis Virus Budding and Incorporation into VSV Virions
Johnson J, Rodgers W, Rose J. A Plasma Membrane Localization Signal in the HIV-1 Envelope Cytoplasmic Domain Prevents Localization at Sites of Vesicular Stomatitis Virus Budding and Incorporation into VSV Virions. Virology 1998, 251: 244-252. PMID: 9837788, DOI: 10.1006/viro.1998.9429.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCell MembraneCells, CulturedCricetinaeCytoplasmGene Products, envHIV Envelope Protein gp120HIV-1HumansMembrane GlycoproteinsMicroscopy, ConfocalMolecular Sequence DataProtein Sorting SignalsRecombinant ProteinsStructure-Activity RelationshipVesicular stomatitis Indiana virusViral Envelope ProteinsVirionConceptsVSV virionsMembrane-proximal amino acidsMembrane localization signalAmino acidsVesicular stomatitis virus (VSV) virionsLocalization signalMembrane domainsG-tailsCytoplasmic tailVirus buddingPrevents localizationVirus virionsMutantsVSV proteinsProteinConfocal microscopyVSV recombinantsEnvelope proteinVSV glycoproteinHuman Immunodeficiency Virus Type 1 EnvVirionsHIV-1 envelope proteinEnv proteinTailHybridsRequirement for a non‐specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus
Schnell M, Buonocore L, Boritz E, Ghosh H, Chernish R, Rose J. Requirement for a non‐specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus. The EMBO Journal 1998, 17: 1289-1296. PMID: 9482726, PMCID: PMC1170477, DOI: 10.1093/emboj/17.5.1289.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCD4 AntigensCell LineCell MembraneCricetinaeCytopathogenic Effect, ViralCytoplasmHumansMembrane GlycoproteinsMolecular Sequence DataMutationRecombinant Fusion ProteinsSequence DeletionSerial PassageVesicular stomatitis Indiana virusViral Envelope ProteinsViral ProteinsVirionConceptsCytoplasmic domainEfficient buddingAmino acidsCytoplasmic domain deletion mutantEfficient virus buddingShort cytoplasmic domainCytoplasmic domain sequencesDomain deletion mutantVesicular stomatitis virus glycoproteinChimeric G proteinsTransmembrane domainDeletion mutantsInternal viral componentsVirus buddingGlycoprotein arrayVesicular stomatitis virusDomain sequencesViral buddingVirion morphologyG proteinsMatrix proteinsVSV GHuman CD4 proteinForeign sequencesBudding
1996
Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains.
Rodgers W, Rose J. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. Journal Of Cell Biology 1996, 135: 1515-1523. PMID: 8978819, PMCID: PMC2133949, DOI: 10.1083/jcb.135.6.1515.Peer-Reviewed Original ResearchConceptsExclusion of CD45Low kinase activityGEM fractionMembrane domainsKinase activitySrc family tyrosine kinasesReservoir of enzymesSpecific membrane domainsActivity of p56lckTyrosine phosphatase CD45Family tyrosine kinasesT cell developmentTX-100-soluble fractionGEM domainsPhosphatase CD45Membrane proteinsKinase specific activityLckTyrosine kinaseMembrane fractionJurkat cellsPeptide mappingP56lckPhosphorylationHyperphosphorylationMembrane Association of Influenza Virus Matrix Protein Does Not Require Specific Hydrophobic Domains or the Viral Glycoproteins
KRETZSCHMAR E, BUI M, ROSE J. Membrane Association of Influenza Virus Matrix Protein Does Not Require Specific Hydrophobic Domains or the Viral Glycoproteins. Virology 1996, 220: 37-45. PMID: 8659126, DOI: 10.1006/viro.1996.0283.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBinding SitesCell LineCell MembraneChick EmbryoDogsHeLa CellsHemagglutinin Glycoproteins, Influenza VirusHemagglutinins, ViralHumansInfluenza A virusMolecular Sequence DataMutagenesis, Site-DirectedNeuraminidaseOligodeoxyribonucleotidesRecombinant ProteinsViral Matrix ProteinsConceptsMembrane associationSpecific hydrophobic domainsM1 proteinMatrix proteinsHydrophobic domainInfluenza virus matrix proteinVirus matrix proteinInteraction of M1Viral glycoproteinsMajor structural componentRibonucleocapsid coreCytoplasmic tailIntegral proteinsMembrane proteinsMembrane bindingSubcellular fractionationMembrane envelopeCellular membranesHeLa cellsViral proteinsHydrophobic regionProteinIsolated membranesMembraneInfluenza proteins
1994
Interactions of normal and mutant vesicular stomatitis virus matrix proteins with the plasma membrane and nucleocapsids
Chong L, Rose J. Interactions of normal and mutant vesicular stomatitis virus matrix proteins with the plasma membrane and nucleocapsids. Journal Of Virology 1994, 68: 441-447. PMID: 8254754, PMCID: PMC236304, DOI: 10.1128/jvi.68.1.441-447.1994.Peer-Reviewed Original ResearchConceptsMembrane associationPlasma membraneAmino-terminal basic domainVesicular stomatitis virusWild-type M proteinCellular membranesMatrix proteinsVesicular stomatitis virus matrix proteinM proteinStable membrane associationTruncated M proteinsVirus matrix proteinVSV nucleocapsidsBasic domainAmino terminusNucleocapsid bindingNucleocapsid interactionMembrane fractionVSV proteinsAmino acidsMembrane specificityProteinStomatitis virusNucleocapsidsMembrane
1993
Dynamic equilibrium between vesicular stomatitis virus glycoprotein monomers and trimers in the Golgi and at the cell surface
Zagouras P, Rose J. Dynamic equilibrium between vesicular stomatitis virus glycoprotein monomers and trimers in the Golgi and at the cell surface. Journal Of Virology 1993, 67: 7533-7538. PMID: 8230472, PMCID: PMC238219, DOI: 10.1128/jvi.67.12.7533-7538.1993.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, ViralAntibody SpecificityBiological TransportBrefeldin ACell CompartmentationCell MembraneCells, CulturedCricetinaeCyclopentanesGolgi ApparatusHexosaminidasesMembrane GlycoproteinsMutationPostural BalanceProtein ConformationProtein Processing, Post-TranslationalVesicular stomatitis Indiana virusViral Envelope ProteinsConceptsEndoplasmic reticulumHeterotrimer formationG proteinsMutant G proteinsG protein trimersVesicular stomatitis virus glycoproteinG protein subunitsVSV G proteinProtein moleculesG protein moleculesWild-type trimersMutant proteinsCytoplasmic domainCellular compartmentsCoexpression experimentsGlycoprotein monomersLonger chase periodsPlasma membraneProtein subunitsMu proteinProtein trimerForms trimersCell surfaceMonomeric subunitsProteinMembrane association of functional vesicular stomatitis virus matrix protein in vivo
Chong L, Rose J. Membrane association of functional vesicular stomatitis virus matrix protein in vivo. Journal Of Virology 1993, 67: 407-414. PMID: 8380086, PMCID: PMC237377, DOI: 10.1128/jvi.67.1.407-414.1993.Peer-Reviewed Original ResearchMeSH KeywordsCell MembraneCytosolHeLa CellsHumansMacromolecular SubstancesMembrane ProteinsModels, BiologicalOctoxynolPolyethylene GlycolsProtein ConformationRecombinant ProteinsRibonucleoproteinsSolubilitySubcellular FractionsVesicular stomatitis Indiana virusViral Core ProteinsViral Matrix ProteinsConceptsVesicular stomatitis virusRNP coresMatrix proteinsVesicular stomatitis virus matrix proteinM proteinVirus matrix proteinSoluble M proteinMajor structural componentRibonucleocapsid coreMembrane associationMembrane proteinsM protein moleculeVirus buddingSubcellular fractionationCellular membranesMembrane envelopeHeLa cellsVSV proteinsViral proteinsDetergent Triton XProteinProtein moleculesConformational differencesStomatitis virusMembrane
1992
Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
Brown D, Rose J. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992, 68: 533-544. PMID: 1531449, DOI: 10.1016/0092-8674(92)90189-j.Peer-Reviewed Original ResearchConceptsBasolateral marker proteinsCertain membrane proteinsApical cell surfaceDetergent-insoluble formGlycosylphosphatidyl inositol (GPI) anchorMembrane subdomainsMembrane proteinsIntracellular associationGolgi complexMicrodomains formGolgi apparatusInositol anchorMarker proteinsCell surfaceProteinApical surfaceEpithelial cellsGPIGlycosphingolipidsComplexesVesiclesLysatesGlycolipidsSortingMembrane
1989
A single-amino-acid substitution eliminates the stringent carbohydrate requirement for intracellular transport of a viral glycoprotein
Pitta A, Rose J, Machamer C. A single-amino-acid substitution eliminates the stringent carbohydrate requirement for intracellular transport of a viral glycoprotein. Journal Of Virology 1989, 63: 3801-3809. PMID: 2760984, PMCID: PMC250973, DOI: 10.1128/jvi.63.9.3801-3809.1989.Peer-Reviewed Original ResearchFc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity
Miettinen H, Rose J, Mellman I. Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell 1989, 58: 317-327. PMID: 2568890, DOI: 10.1016/0092-8674(89)90846-5.Peer-Reviewed Original Research
1988
Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum.
Shaw A, Rottier P, Rose J. Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum. Proceedings Of The National Academy Of Sciences Of The United States Of America 1988, 85: 7592-7596. PMID: 2845415, PMCID: PMC282238, DOI: 10.1073/pnas.85.20.7592.Peer-Reviewed Original ResearchConceptsSignal sequenceEndoplasmic reticulumC-terminal transmembraneType II transmembrane proteinInsertion of proteinsCleaved signal sequenceSignal sequence functionN-terminal extensionShort hydrophobic domainVesicular stomatitis virus glycoproteinMembrane anchorMutant proteinsCytoplasmic domainMembrane insertionTransmembrane proteinC-terminusCytoplasmic sideN-terminusBlock cleavageHydrophobic domainCleavage siteHeLa cellsPoint mutationsProteinMicrosomal membranesInfluence of new glycosylation sites on expression of the vesicular stomatitis virus G protein at the plasma membrane.
Machamer C, Rose J. Influence of new glycosylation sites on expression of the vesicular stomatitis virus G protein at the plasma membrane. Journal Of Biological Chemistry 1988, 263: 5948-5954. PMID: 2833523, DOI: 10.1016/s0021-9258(18)60658-1.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBinding SitesBiological TransportCell LineCell MembraneCloning, MolecularDNA, RecombinantFluorescent Antibody TechniqueGlycosylationImmunosorbent TechniquesIodine RadioisotopesLactoperoxidaseMembrane GlycoproteinsMolecular Sequence DataMutationOligosaccharidesTransfectionTunicamycinVesicular stomatitis Indiana virusViral Envelope ProteinsViral Matrix ProteinsConceptsVesicular stomatitis virus G proteinVirus G proteinG proteinsConsensus sitesIntracellular transportWild-type G proteinWild-type proteinOligonucleotide-directed mutagenesisNew consensus sitePlasma membrane glycoproteinsMutant proteinsNew glycosylation siteNew sitesAsparagine-linked oligosaccharidesPlasma membraneGlycosylation sitesMembrane glycoproteinsInhibition of transportProteinPolypeptide backboneNormal sitesIndirect roleOligosaccharidesExpressionSitesVesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding.
Machamer C, Rose J. Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding. Journal Of Biological Chemistry 1988, 263: 5955-5960. PMID: 2833524, DOI: 10.1016/s0021-9258(18)60659-3.Peer-Reviewed Original ResearchBinding SitesBiological TransportCell LineCell MembraneDisulfidesDNA, RecombinantEndoplasmic ReticulumFluorescent Antibody TechniqueGlycosylationHexosaminidasesImmunosorbent TechniquesIodine RadioisotopesLactoperoxidaseMembrane GlycoproteinsMutationOligosaccharidesProtein ConformationStructure-Activity RelationshipTemperatureTransfectionVesicular stomatitis Indiana virusViral Envelope ProteinsViral Matrix Proteins
1987
Replacement of the cytoplasmic domain alters sorting of a viral glycoprotein in polarized cells.
Puddington L, Woodgett C, Rose J. Replacement of the cytoplasmic domain alters sorting of a viral glycoprotein in polarized cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 2756-2760. PMID: 3033661, PMCID: PMC304737, DOI: 10.1073/pnas.84.9.2756.Peer-Reviewed Original ResearchConceptsCytoplasmic domainG proteinsPlasma membraneVesicular stomatitis virusNormal cytoplasmic domainIntegral membrane proteinsPolarized epithelial cellsVSV G proteinApical plasma membraneBasolateral plasma membraneBasolateral membraneCanine kidney cell lineMadin-Darby canine kidney (MDCK) cell lineIndirect immunofluorescence microscopyMembrane proteinsKidney cell lineDomain altersPolarized expressionImmunofluorescence microscopyBasolateral surfaceProteinStomatitis virusCell linesViral glycoproteinsEpithelial cellsA critical role for the polarization of membrane recycling in cell motility
Kupfer A, Kronebusch P, Rose J, Singer S. A critical role for the polarization of membrane recycling in cell motility. Cytoskeleton 1987, 8: 182-189. PMID: 2826018, DOI: 10.1002/cm.970080210.Peer-Reviewed Original ResearchConceptsActin cytoskeletonG proteinsMotile cellsCell migrationTemperature-sensitive mutantCell surface appearanceCritical rolePolarized insertionMembrane recyclingMembrane massCell motilityVesicular stomatitis virusCytochalasin DCell surfaceStomatitis virusCytoskeletonLeading edgeCellsMutantsCDNAMigrationInsertionRoleMotilityImmunofluorescence
1986
Cytoplasmic domains of cellular and viral integral membrane proteins substitute for the cytoplasmic domain of the vesicular stomatitis virus glycoprotein in transport to the plasma membrane.
Puddington L, Machamer C, Rose J. Cytoplasmic domains of cellular and viral integral membrane proteins substitute for the cytoplasmic domain of the vesicular stomatitis virus glycoprotein in transport to the plasma membrane. Journal Of Cell Biology 1986, 102: 2147-2157. PMID: 3011809, PMCID: PMC2114239, DOI: 10.1083/jcb.102.6.2147.Peer-Reviewed Original ResearchMeSH KeywordsB-LymphocytesBiological Transport, ActiveCell LineCell MembraneCoronaviridaeCytoplasmGenes, ViralHemagglutinin Glycoproteins, Influenza VirusHemagglutinins, ViralHumansImmunoglobulin mu-ChainsMembrane GlycoproteinsMembrane ProteinsOligonucleotidesTransfectionVesicular stomatitis Indiana virusViral Envelope ProteinsViral ProteinsConceptsNormal cytoplasmic domainIntegral membrane proteinsCytoplasmic domainVesicular stomatitis virus glycoproteinG proteinsPlasma membraneHybrid proteinMembrane proteinsCellular integral membrane proteinsViral integral membrane proteinsB cell line WEHI-231Wild-type G proteinCell line WEHI-231Amino acid sequenceRate of transportVirus glycoproteinEukaryotic cellsTransmembrane domainChimeric cDNAHybrid geneWEHI-231Acid sequenceType G proteinsHeavy chain moleculesGolgi complex
1985
A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface.
Machamer C, Florkiewicz R, Rose J. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Molecular And Cellular Biology 1985, 5: 3074-3083. PMID: 3018499, PMCID: PMC369121, DOI: 10.1128/mcb.5.11.3074.Peer-Reviewed Original ResearchConceptsCell surface expressionG proteinsGlycosylation sitesVesicular stomatitis virus G proteinCell surfaceWild-type proteinVesicular stomatitis virus glycoproteinRole of glycosylationSurface expressionSite-directed mutagenesisVirus G proteinAsparagine-linked glycansIndirect immunofluorescence microscopyIntracellular transportImmunofluorescence microscopyOligosaccharide processingProteinProteolytic breakdownVirus glycoproteinExpressionPalmitic acidCellsMutagenesisOligosaccharidesCDNAGlycosylation allows cell-surface transport of an anchored secretory protein
Guan J, Machamer C, Rose J. Glycosylation allows cell-surface transport of an anchored secretory protein. Cell 1985, 42: 489-496. PMID: 3928168, DOI: 10.1016/0092-8674(85)90106-0.Peer-Reviewed Original ResearchConceptsCell surfaceProtein transportMutant proteinsCarboxy-terminal extensionCell surface transportVesicular stomatitis virus glycoproteinMembrane-anchored formSingle amino acidCytoplasmic domainHybrid geneGlycosylation sitesConsensus sequenceSecretory proteinsGolgi apparatusCellular membranesAmino acidsProteinRandom sitesGlycosylationVirus glycoproteinRat growth hormoneGrowth hormoneTransmembraneGenesSitesStructural requirements of a membrane-spanning domain for protein anchoring and cell surface transport
Adams G, Rose J. Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell 1985, 41: 1007-1015. PMID: 3924407, DOI: 10.1016/s0092-8674(85)80081-7.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiological TransportCell LineCell MembraneEndoplasmic ReticulumFluorescent Antibody TechniqueGlycoside HydrolasesGolgi ApparatusMannosyl-Glycoprotein Endo-beta-N-AcetylglucosaminidaseMembrane GlycoproteinsMembrane ProteinsMutationPalmitic AcidPalmitic AcidsPlasmidsViral Envelope ProteinsViral ProteinsConceptsMembrane-spanning domainsCell surface transportTransmembrane domainG proteinsAmino acidsVesicular stomatitis virus glycoproteinOligonucleotide-directed mutagenesisHydrophobic amino acidsMembrane anchoringProtein anchoringIntracellular membranesTransmembrane configurationEndoplasmic reticulumCell surfaceProteinVirus glycoproteinDNASurface transportStructural requirementsDomainMutagenesisAcidReticulumAnchoringTransportIncorporation of a charged amino acid into the membrane-spanning domain blocks cell surface transport but not membrane anchoring of a viral glycoprotein.
Adams G, Rose J. Incorporation of a charged amino acid into the membrane-spanning domain blocks cell surface transport but not membrane anchoring of a viral glycoprotein. Molecular And Cellular Biology 1985, 5: 1442-1448. PMID: 2993864, PMCID: PMC366875, DOI: 10.1128/mcb.5.6.1442.Peer-Reviewed Original ResearchConceptsMembrane anchoringG proteinsAmino acidsCell surfaceIsoleucine residueMembrane-spanning domainsCell surface transportVesicular stomatitis virus glycoproteinOligonucleotide-directed mutagenesisAmino acid sequenceUncharged amino acidsDetectable protein levelsHydrophobic amino acidsAnimal cellsCDNA clonesIntracellular membranesAcid sequencePunctate patternGolgi regionProteinContinuous stretchVesicular patternProtein levelsViral glycoproteinsVirus glycoprotein