2014
Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme
Eiler D, Wang J, Steitz TA. Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 13028-13033. PMID: 25157168, PMCID: PMC4246988, DOI: 10.1073/pnas.1414571111.Peer-Reviewed Original Research
2009
Tertiary architecture of the Oceanobacillus iheyensis group II intron
Toor N, Keating KS, Fedorova O, Rajashankar K, Wang J, Pyle AM. Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA 2009, 16: 57-69. PMID: 19952115, PMCID: PMC2802037, DOI: 10.1261/rna.1844010.Peer-Reviewed Original ResearchConceptsGroup II intronsPotential evolutionary relationshipsGroup II intron structureGroup IIC intronIntron structureEvolutionary relationshipsEukaryotic spliceosomeInteraction networksRNA moleculesIntronsTertiary structural organizationGenetic studiesRibose zipperRNA foldingTertiary interactionsLarge ribozymesInteraction nodesStructural organizationTertiary architectureEukaryotesSpliceosomeGene therapyGenomeZipperFolding
2007
Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core
Stahley MR, Adams PL, Wang J, Strobel SA. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core. Journal Of Molecular Biology 2007, 372: 89-102. PMID: 17612557, PMCID: PMC2071931, DOI: 10.1016/j.jmb.2007.06.026.Peer-Reviewed Original Research
2004
Crystal structure of a self-splicing group I intron with both exons
Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA. Crystal structure of a self-splicing group I intron with both exons. Nature 2004, 430: 45-50. PMID: 15175762, DOI: 10.1038/nature02642.Peer-Reviewed Original Research