2006
Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells
Dombrowski MA, Sasaki M, Lankford KL, Kocsis JD, Radtke C. Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells. Brain Research 2006, 1125: 1-8. PMID: 17112480, PMCID: PMC2673087, DOI: 10.1016/j.brainres.2006.09.089.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCell Adhesion Molecules, NeuronalCell TransplantationGreen Fluorescent ProteinsImmunohistochemistryMicroscopy, ImmunoelectronMyelin SheathNAV1.6 Voltage-Gated Sodium ChannelNerve RegenerationNeurofilament ProteinsNeurogliaOlfactory BulbRanvier's NodesRatsRats, Sprague-DawleySciatic NeuropathySodium ChannelsTime FactorsConceptsPeripheral nerve fibersPeripheral nervesNodes of RanvierFunctional outcomeAxonal regenerationNerve fibersRegenerated peripheral nerve fibersSciatic nerve crush lesionNerve crush lesionPeripheral-type myelinSpinal cord resultsTransplantation of olfactoryPeripheral axonal regenerationParanodal CasprCrush lesionCord resultsFunctional improvementOlfactory bulbTransection siteTransgenic ratsLesion zoneNerveNodal formationTransplantation siteOECs
1998
The delayed depolarization in rat cutaneous afferent axons is reduced following nerve transection and ligation, but not crush: Implications for injury‐induced axonal NA + channel reorganization
Sakai J, Honmou O, Kocsis J, Hashi K. The delayed depolarization in rat cutaneous afferent axons is reduced following nerve transection and ligation, but not crush: Implications for injury‐induced axonal NA + channel reorganization. Muscle & Nerve 1998, 21: 1040-1047. PMID: 9655122, DOI: 10.1002/(sici)1097-4598(199808)21:8<1040::aid-mus8>3.0.co;2-8.Peer-Reviewed Original ResearchConceptsCutaneous afferent axonsNerve injurySural nerveNerve transectionAfferent axonsAction potentialsCell bodiesCutaneous afferent neuronsPeripheral nerve injuryAfferent cell bodiesSucrose gap chamberRat sural nerveTarget disconnectionAfferent neuronsPeripheral targetsAxonal NaNerveRefractory periodAxonsTransectionCompound actionDepolarizationSimilar changesInjuryTarget connections
1994
Gabapentin increases GABA-induced depolarization in rat neonatal optic nerve
Kocsis J, Honmou O. Gabapentin increases GABA-induced depolarization in rat neonatal optic nerve. Neuroscience Letters 1994, 169: 181-184. PMID: 8047279, DOI: 10.1016/0304-3940(94)90386-7.Peer-Reviewed Original Research
1993
Transient presence of GABA in astrocytes of the developing optic nerve
Ochi S, Lim J, Rand M, During M, Sakatani K, Kocsis J. Transient presence of GABA in astrocytes of the developing optic nerve. Glia 1993, 9: 188-198. PMID: 8294149, DOI: 10.1002/glia.440090304.Peer-Reviewed Original ResearchConceptsWhole optic nerveOptic nerveHigh-pressure liquid chromatographyGABA immunoreactivityPostnatal developmentEnzyme glutamic acid decarboxylaseIntact optic nerveRat optic nerveNeonatal optic nerveGlutamic acid decarboxylaseAstrocyte cell bodiesPostnatal day 20GABA immunostainingGFAP stainingPostnatal weekGABA stainingNerveCultured astrocytesAstrocytesDay 20GABAAcid decarboxylaseCell bodiesDevelopmental time courseImmunoreactivityIncreased spike‐frequency adaptation and tea sensitivity in dorsal root fibers after sciatic nerve injury
Utzschneider D, Bhisitkhul R, Kocsis J. Increased spike‐frequency adaptation and tea sensitivity in dorsal root fibers after sciatic nerve injury. Muscle & Nerve 1993, 16: 958-963. PMID: 8355727, DOI: 10.1002/mus.880160912.Peer-Reviewed Original ResearchConceptsCompound action potentialDorsal root axonsNerve injuryDorsal rootsPotassium channel blockerAction potentialsSciatic nerveChannel blockersSpike adaptationSciatic nerve injuryPeripheral nerve injurySucrose gap chamberBrief tetanic stimulationDorsal root fibersWhole nerve recordingsSpike frequency adaptationTransection groupBurst dischargesTetanic stimulationNerve recordingsControl groupInjuryRoot fibersBurst responseNerveThe attenuation of GABA sensitivity in the maturing myelin-deficient rat optic nerve
Lim J, Utzschneider D, Sakatani K, Kocsis J. The attenuation of GABA sensitivity in the maturing myelin-deficient rat optic nerve. Brain Research 1993, 72: 15-20. PMID: 8384095, DOI: 10.1016/0165-3806(93)90155-4.Peer-Reviewed Original ResearchConceptsOptic nerveRat optic nerveEffect of GABAMD ratsNipecotic acidGABA sensitivityGABA uptake inhibitor nipecotic acidNormal optic nervesGABAA receptor agonistOptic nerve axonsEarly postnatal periodCentral nervous system axonsThird postnatal weekSucrose gap techniqueResult of myelinationLarger GABAAxonal excitabilityControl ratsGABAA receptorsEndogenous releasePostnatal periodPostnatal weekNerve sensitivityNerveGABA
1992
Transient presence and functional interaction of endogenous GABA and GABAA receptors in developing rat optic nerve
Sakatani K, Black J, Kocsis J. Transient presence and functional interaction of endogenous GABA and GABAA receptors in developing rat optic nerve. Proceedings Of The Royal Society B 1992, 247: 155-161. PMID: 1349183, DOI: 10.1098/rspb.1992.0022.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerveCentral nervous systemGABAA receptorsIntact rat optic nerveCultured glia cellsFunctional GABAA receptorsGABAA receptor agonistNeonatal optic nerveNeuronal cell bodiesO-2A progenitor cellsNon-synaptic sitesPre-myelinated axonsWhite matter regionsSynthesis of GABAAxonal excitabilityReceptor agonistEndogenous GABAGABA uptakeGlia cellsSynaptic neurotransmittersNervous systemEndogenous neurotransmittersType 2Nerve
1989
Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve
Gordon T, Kocsis J, Waxman S. Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve. Brain Research 1989, 502: 252-257. PMID: 2555026, DOI: 10.1016/0006-8993(89)90620-3.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerveEarly afterhyperpolarizationPharmacological sensitivityAction potentialsPeak latencyAction potential broadeningConstant current depolarizationSucrose gap chamberPotassium channel blockerLate afterhyperpolarizationChannel blockersRepetitive stimulationAfterhyperpolarizationNervePotassium conductanceSucrose gapTetraethylammoniumPotential broadeningCurrent depolarizationDepolarizationDurationApaminBlockersCharybdotoxin
1987
Physiological properties of regenerated rat sciatic nerve following lesions at different postnatal ages
Bowe C, Kocsis J, Waxman S, Hildebrand C. Physiological properties of regenerated rat sciatic nerve following lesions at different postnatal ages. Brain Research 1987, 34: 123-131. DOI: 10.1016/0165-3806(87)90201-x.Peer-Reviewed Original ResearchControl nervesPostnatal ageSciatic nerveRegenerated nervesRegenerated rat sciatic nerveFrequency-following abilityOlder postnatal ageSciatic crush lesionRegenerated sciatic nerveAge 3 weeksCompound action potentialDifferent postnatal agesRat sciatic nerveWhole-nerve responseMonths of ageRelative refractory periodCrush lesionPharmacological blockadeNerve responsesSlight prolongationNerveElectrophysiological propertiesAction potentialsRefractory periodOlder ageAxonal GABA receptors are selectively present on normal and regenerated sensory fibers in rat peripheral nerve
Bhisitkul R, Villa J, Kocsis J. Axonal GABA receptors are selectively present on normal and regenerated sensory fibers in rat peripheral nerve. Experimental Brain Research 1987, 66: 659-663. PMID: 3038587, DOI: 10.1007/bf00270698.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidVentral root fibersGABA receptorsRoot fibersSensory fibersPeripheral nervesSensory axonsRegenerated sensory axonsSucrose gap chamberPeripheral nerve fibersRat peripheral nerveDorsal root fibersMammalian peripheral nervesAgonist baclofenNerve crushDorsal rootsAgonist muscimolSciatic nerveNerve fibersRat peripheral nerve fibersNerveReceptorsMuscimolSelective presenceAxonsNodal spacing along regenerated axons following a crush lesion of the developing rat sciatic nerve
Hildebrand C, Mustafa G, Bowe C, Kocsis J. Nodal spacing along regenerated axons following a crush lesion of the developing rat sciatic nerve. Brain Research 1987, 32: 147-154. DOI: 10.1016/0165-3806(87)90148-9.Peer-Reviewed Original ResearchNodal spacing along regenerated axons following a crush lesion of the developing rat sciatic nerve.
Hildebrand C, Mustafa G, Bowe C, Kocsis J. Nodal spacing along regenerated axons following a crush lesion of the developing rat sciatic nerve. Brain Research 1987, 429: 147-54. PMID: 3567658, DOI: 10.1016/0165-3806(87)90148-9.Peer-Reviewed Original ResearchConceptsRat sciatic nerveSciatic nerveRegenerated nervesCrush lesionRegenerated rat sciatic nerveNewborn rat pupsSciatic nerve axonsPostnatal ageRegenerated axonsPostnatal eventsRat pupsNerveNerve axonsMyelin sheathL increaseAxonsWeeksBirthAgeLesionsMyelinationSignsRemodellingSuch signsLength growthChapter 8 Ionic channel organization of normal and regenerating mammalian axons
Kocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress In Brain Research 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.Peer-Reviewed Original ResearchConceptsNerve fibersPeripheral nervesRegenerated nerve fibersCell remodellingNormal developmentMammalian nerve fibresSchwann cellsElectrophysiological characteristicsFine caliberMyelinated axonsImmature axonsAxonal growthMammalian axonsNerveNormal maturationRemodelling occursAxonsCell arrestRemodellingTime courseMyelinIonic channelsLong termMaturationTime of maturation
1985
Myelin sheath remodelling in regenerated rat sciatic nerve
Hildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve. Brain Research 1985, 358: 163-170. PMID: 2416385, DOI: 10.1016/0006-8993(85)90960-6.Peer-Reviewed Original ResearchConceptsRat sciatic nerveSciatic nerveRegenerated nervesAdult rat sciatic nerveRegenerated rat sciatic nerveNormal control nervesLight microscopic examinationAction potential waveformCrush lesionMonths survivalNerve segmentsControl nervesSame nerveIndividual nervesNerve fibersNerveShort sheathMyelin layersMyelin sheathPotassium channelsMicroscopic examinationLigature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance
Waxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.Peer-Reviewed Original ResearchConceptsAction potentialsRepetitive firingSingle stimulusPotassium channelsCompound action potentialRat sciatic nerveAction potential propertiesWhole-nerve responseAction potential characteristicsIntra-axonal recordingsAction potential waveformNerve segmentsSciatic nerveNerve responsesPeripheral nervesInjury siteMyelinated fibersLater spikesElectrophysiological observationsNerveRefractory periodFiring patternsPotassium conductancePotential waveformInitial spike
1984
Retrograde impulse activity and horseradish peroxidase tracig of nerve fibers entering neuroma studied in vitro
Kocsis J, Preston R, Targ E. Retrograde impulse activity and horseradish peroxidase tracig of nerve fibers entering neuroma studied in vitro. Experimental Neurology 1984, 85: 400-412. PMID: 6745381, DOI: 10.1016/0014-4886(84)90150-x.Peer-Reviewed Original Research
1983
Myelin protein metabolism in demyelination and remyelination in the sciatic nerve
Smith M, Kocsis J, Waxman S. Myelin protein metabolism in demyelination and remyelination in the sciatic nerve. Brain Research 1983, 270: 37-44. PMID: 6871715, DOI: 10.1016/0006-8993(83)90789-8.Peer-Reviewed Original ResearchConceptsMyelin proteinsControl nervesLPC injectionSciatic nerveRight sciatic nerveSeries of ratsLeft nerveSchwann cellsNerveStructural myelin proteinsLPC treatmentFirst weekTime pointsAmino acid incorporationProtein metabolismLabeled amino acidsAcid incorporationMyelinDaysInjectionLysophosphatidylcholineDemyelinationRemyelinationProteinRats