2024
Single-cell transcriptomic and proteomic analysis of Parkinson’s disease brains
Zhu B, Park J, Coffey S, Russo A, Hsu I, Wang J, Su C, Chang R, Lam T, Gopal P, Ginsberg S, Zhao H, Hafler D, Chandra S, Zhang L. Single-cell transcriptomic and proteomic analysis of Parkinson’s disease brains. Science Translational Medicine 2024, 16: eabo1997. PMID: 39475571, DOI: 10.1126/scitranslmed.abo1997.Peer-Reviewed Original ResearchConceptsProteomic analysisAlzheimer's diseasePrefrontal cortexBrain cell typesGenetics of PDParkinson's diseaseCell-cell interactionsChaperone expressionSingle-nucleus transcriptomesExpressed genesTranscriptional changesPostmortem human brainPostmortem brain tissueDiseased brainSynaptic proteinsSingle-cellDown-regulationBrain cell populationsBrain regionsCell typesNeurodegenerative disordersLate-stage PDParkinson's disease brainsDisease etiologyNeuronal vulnerability
2020
Stac protein regulates release of neuropeptides
Hsu IU, Linsley JW, Zhang X, Varineau JE, Berkhoudt DA, Reid LE, Lum MC, Orzel AM, Leflein A, Xu H, Collins CA, Hume RI, Levitan ES, Kuwada JY. Stac protein regulates release of neuropeptides. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 29914-29924. PMID: 33168737, PMCID: PMC7703553, DOI: 10.1073/pnas.2009224117.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedBehavior Observation TechniquesBehavior, AnimalCalcium ChannelsDrosophila melanogasterDrosophila ProteinsFemaleIntracellular Signaling Peptides and ProteinsIntravital MicroscopyLarvaMaleModels, AnimalMotor NeuronsMuscle, SkeletalNeuromuscular JunctionNeuropeptidesOptical ImagingPatch-Clamp TechniquesPresynaptic TerminalsConceptsSTAC proteinsRelease of neuropeptidesVertebrate skeletal muscleSubset of neuronsMolecular regulationGenetic manipulationKey regulatorMotor neuronsCytosolic CaNumerous neural functionsSmall familyCentral nervous systemExcitation-contraction couplingGenesSkeletal muscleL-type CaProteinNeuropeptide releaseNervous systemNeural functionDrosophilaNeuropeptidesVertebratesNeuronsRegulatorDstac Regulates Excitation-Contraction Coupling in Drosophila Body Wall Muscles
Hsu IU, Linsley JW, Reid LE, Hume RI, Leflein A, Kuwada JY. Dstac Regulates Excitation-Contraction Coupling in Drosophila Body Wall Muscles. Frontiers In Physiology 2020, 11: 573723. PMID: 33123029, PMCID: PMC7573238, DOI: 10.3389/fphys.2020.573723.Peer-Reviewed Original ResearchExcitation-contraction couplingL-type voltage-gated calcium channelsVoltage-gated calcium channelsSubset of neuronsBody wall musclesL-type CaCalcium channelsNormal expression levelsEC couplingMuscle contractionSkeletal muscleSpecific antibodiesMuscleLarval body wall musclesDmca1DExpression levelsWall musclesNormal locomotionDrosophila body wall musclesNeuronsVertebrate skeletal muscleAntibodiesDeficient larvae
2019
Reduction of AHI1 in the serum of Taiwanese with probable Alzheimer’s disease
Sheu JJ, Yang LY, Sanotra MR, Wang ST, Lu HT, Kam RSY, Hsu IU, Kao SH, Lee CK, Shieh JC, Lin YF. Reduction of AHI1 in the serum of Taiwanese with probable Alzheimer’s disease. Clinical Biochemistry 2019, 76: 24-30. PMID: 31786207, DOI: 10.1016/j.clinbiochem.2019.11.011.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseAD seraAD patientsEarly diagnosisAD model mouse brainsC-terminal APP fragmentsMini-Mental State Examination scoreSerum samplesHealthy control subjectsState Examination scoreBlood-based biomarkersModel mouse brainProbable Alzheimer's diseaseAge-dependent mannerGood diagnostic performanceHC seraControl subjectsAPP fragmentsAD biomarkersMouse brainYounger ageAD diagnosisNeuronal cellsWestern blottingDisease
2018
Elevated IgM against Nε-(Carboxyethyl)lysine-modified Apolipoprotein A1 peptide 141–147 in Taiwanese with Alzheimer's disease
Lin CY, Sheu JJ, Tsai IS, Wang ST, Yang LY, Hsu IU, Chang HW, Lee HM, Kao SH, Lee CK, Chen CH, Lin YF. Elevated IgM against Nε-(Carboxyethyl)lysine-modified Apolipoprotein A1 peptide 141–147 in Taiwanese with Alzheimer's disease. Clinical Biochemistry 2018, 56: 75-82. PMID: 29680706, DOI: 10.1016/j.clinbiochem.2018.04.009.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAlzheimer DiseaseAntibody SpecificityApolipoprotein A-IAutoantibodiesAutoimmunityBiomarkersCase-Control StudiesEnzyme-Linked Immunosorbent AssayFemaleGlycation End Products, AdvancedHumansImmunoglobulin MLysineMalePeptide FragmentsProtein Processing, Post-TranslationalPsychiatric Status Rating ScalesROC CurveTaiwanUp-RegulationConceptsAdvanced glycation end productsSpecific advanced glycation end productsAlzheimer's diseaseMini-Mental State Examination scoreMental State Examination scoreEarly AD markersEarly AD pathologyState Examination scoreEarly disease statesGlycation end productsRelated autoantibodiesAD markersIgM levelsAD pathologyElevated IgMAD seraAD patientsDisease progressionAD biomarkersApolipoprotein A1IgMAutoantibodiesApoA1Serum samplesWestern blottingDstac is required for normal circadian activity rhythms in Drosophila
Hsu IU, Linsley JW, Varineau JE, Shafer OT, Kuwada JY. Dstac is required for normal circadian activity rhythms in Drosophila. Chronobiology International 2018, 35: 1016-1026. PMID: 29621409, PMCID: PMC6103890, DOI: 10.1080/07420528.2018.1454937.Peer-Reviewed Original ResearchConceptsPigment Dispersing FactorS-LNSmall ventrolateral neuronsBrain of DrosophilaL-type voltage-gated CaCircadian activityNovel genesAdaptor proteinCircadian locomotionVoltage-gated CaActivity rhythmsDrosophilaDmca1DGenesVentrolateral neuronsCircadian activity rhythmsVertebratesSTAC3ProteinBindsCACHActivity
2017
Transport of the alpha subunit of the voltage gated L‐type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles
Linsley JW, Hsu I, Wang W, Kuwada JY. Transport of the alpha subunit of the voltage gated L‐type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles. Traffic 2017, 18: 622-632. PMID: 28697281, PMCID: PMC5569907, DOI: 10.1111/tra.12502.Peer-Reviewed Original ResearchConceptsEC couplingL-type calcium channelsSkeletal muscleL-type voltageExcitation-contraction couplingCongenital myopathyCalcium channelsLongitudinal SRSarcoplasmic reticulumDHPRMembrane depolarizationMuscle fibersTubule membranesMuscleSR membranesAlpha subunitSarcoplasmic reticulum membranesDynamic imagingBeta subunitMembrane voltageTriadPrecise localizationTherapyMyopathy
2016
Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3
Linsley JW, Hsu IU, Groom L, Yarotskyy V, Lavorato M, Horstick EJ, Linsley D, Wang W, Franzini-Armstrong C, Dirksen RT, Kuwada JY. Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 114: e228-e236. PMID: 28003463, PMCID: PMC5240691, DOI: 10.1073/pnas.1619238114.Peer-Reviewed Original ResearchConceptsEC couplingDihydropyridine receptorNative American myopathySarcoplasmic reticulumExcitation-contraction couplingSkeletal muscle contractionVoltage-sensing dihydropyridine receptorCaffeine-induced CaRyanodine receptor 1Receptor 1Muscle contractionInternal storesMuscle Ca2Muscle fibersSTAC3Luminal CaMyopathyTransverse tubule membranesTubule membranesCaffeine sensitivityHuman myopathiesCoupling apparatusHuman diseasesDynamic imagingCritical role
2015
Huntingtin-Associated Protein 1 Interacts with Breakpoint Cluster Region Protein to Regulate Neuronal Differentiation
Huang PT, Chen CH, Hsu IU, Salim S, Kao SH, Cheng CW, Lai CH, Lee CF, Lin YF. Huntingtin-Associated Protein 1 Interacts with Breakpoint Cluster Region Protein to Regulate Neuronal Differentiation. PLOS ONE 2015, 10: e0116372. PMID: 25671650, PMCID: PMC4324908, DOI: 10.1371/journal.pone.0116372.Peer-Reviewed Original ResearchConceptsBreakpoint cluster region proteinMicrotubule-dependent traffickingNeuronal differentiationRho GTPase regulatorsRegion proteinsProtein 1 interactsNeuro-2a cellsExtracellular signalsBrain-enriched proteinProteomic analysisGTPase regulatorDownstream effectorsPostnatal lethalityHAP1Neuronal cellsWild-type mouse brainProtein 1TraffickingNeurite outgrowthTropomyosin-related kinaseProteinKinaseNeurodegenerative diseasesDifferentiationMicrotubules
2013
Apoptotic toxicity of destruxin B in human non-Hodgkin lymphoma cells
Chao PZ, Chin YP, Hsu IU, Liu CM, Yu YC, Leung TK, Lee YJ, Chen CH, Lin YF. Apoptotic toxicity of destruxin B in human non-Hodgkin lymphoma cells. Toxicology In Vitro 2013, 27: 1870-1876. PMID: 23751424, DOI: 10.1016/j.tiv.2013.05.016.Peer-Reviewed Original ResearchConceptsApoptosis-inducing factorDeath receptor pathwayDestruxin BNon-Hodgkin lymphoma cellsReceptor pathwayMitochondrial membrane potentialLymphoma cellsDeath domainExpression of tBidMitochondrial membranePotential anti-cancer activityCell growthApoptotic toxicityFungal toxinsCaspase-3Bcl-2Anti-cancer activityProtein expressionMembrane potentialApoptosisWestern blottingPathwayCellsExpressionTBid