2023
Recruited macrophages elicit atrial fibrillation
Hulsmans M, Schloss M, Lee I, Bapat A, Iwamoto Y, Vinegoni C, Paccalet A, Yamazoe M, Grune J, Pabel S, Momin N, Seung H, Kumowski N, Pulous F, Keller D, Bening C, Green U, Lennerz J, Mitchell R, Lewis A, Casadei B, Iborra-Egea O, Bayes-Genis A, Sossalla S, Ong C, Pierson R, Aster J, Rohde D, Wojtkiewicz G, Weissleder R, Swirski F, Tellides G, Tolis G, Melnitchouk S, Milan D, Ellinor P, Naxerova K, Nahrendorf M. Recruited macrophages elicit atrial fibrillation. Science 2023, 381: 231-239. PMID: 37440641, PMCID: PMC10448807, DOI: 10.1126/science.abq3061.Peer-Reviewed Original ResearchConceptsAtrial fibrillationStromal cellsMitral valve regurgitationHeart failureValve regurgitationInflammatory monocytesMacrophage expansionMonocyte migrationMouse atriaFibrillationHuman atriumAtriumCell-cell interaction analysisSingle-cell transcriptomesMiceCell compositionHypertensionTranscriptome changesImmunotherapySPP1CellsRegurgitationObesityPatientsArrhythmias
2022
Extruded poly (glycerol sebacate) and polyglycolic acid vascular graft forms a neoartery
Fukunishi T, Lui C, Ong CS, Dunn T, Xu S, Smoot C, Smalley R, Harris J, Gabriele P, Santhanam L, Lu S, Hibino N. Extruded poly (glycerol sebacate) and polyglycolic acid vascular graft forms a neoartery. Journal Of Tissue Engineering And Regenerative Medicine 2022, 16: 346-354. PMID: 35084808, DOI: 10.1002/term.3282.Peer-Reviewed Original Research
2021
Fast-Degrading Tissue-Engineered Vascular Grafts Lead to Increased Extracellular Matrix Cross-Linking Enzyme Expression
Fukunishi T, Ong CS, He YJ, Inoue T, Zhang H, Steppan J, Matsushita H, Johnson J, Santhanam L, Hibino N. Fast-Degrading Tissue-Engineered Vascular Grafts Lead to Increased Extracellular Matrix Cross-Linking Enzyme Expression. Tissue Engineering Part A 2021, 27: 1368-1375. PMID: 33599167, DOI: 10.1089/ten.tea.2020.0266.Peer-Reviewed Original ResearchConceptsVascular stiffnessNative aortaVascular graftsTissue-engineered vascular graftsLysyl oxidaseTissue transglutaminaseECM remodeling processRisk of infectionExtracellular matrixArterial pressureAneurysmal formationCardiovascular diseaseInterposition conduitsGraftSynthetic vascular graftsVascular neotissue formationLOX expressionCross-linking enzymeMonthsRemodeling processLack of endothelializationArterial prosthesesEnzyme expressionCompliance mismatchAorta
2020
Different degradation rates of nanofiber vascular grafts in small and large animal models
Fukunishi T, Ong CS, Yesantharao P, Best CA, Yi T, Zhang H, Mattson G, Boktor J, Nelson K, Shinoka T, Breuer CK, Johnson J, Hibino N. Different degradation rates of nanofiber vascular grafts in small and large animal models. Journal Of Tissue Engineering And Regenerative Medicine 2020, 14: 203-214. PMID: 31756767, DOI: 10.1002/term.2977.Peer-Reviewed Original ResearchConceptsSmall animal modelsAnimal modelsLarge animal modelRat modelSheep modelVascular graftsGraft materialType of surgeryDuration of implantationExtracellular matrix depositionVenous circulationMonths postimplantationGraftAutologous tissueMature collagenMatrix depositionClinical translationElastin formationSurgery
2019
Cardiac regeneration using human‐induced pluripotent stem cell‐derived biomaterial‐free 3D‐bioprinted cardiac patch in vivo
Yeung E, Fukunishi T, Bai Y, Bedja D, Pitaktong I, Mattson G, Jeyaram A, Lui C, Ong CS, Inoue T, Matsushita H, Abdollahi S, Jay SM, Hibino N. Cardiac regeneration using human‐induced pluripotent stem cell‐derived biomaterial‐free 3D‐bioprinted cardiac patch in vivo. Journal Of Tissue Engineering And Regenerative Medicine 2019, 13: 2031-2039. PMID: 31408915, PMCID: PMC7254497, DOI: 10.1002/term.2954.Peer-Reviewed Original ResearchConceptsControl groupHeart failureCardiac functionPatch groupCardiac tissueCause of deathRat myocardial infarction modelHuman-induced pluripotent stem cell-derived cardiomyocytesMyocardial infarction modelScar tissue formationPluripotent stem cell-derived cardiomyocytesTrend of improvementStem cell-derived cardiomyocytesVivo regenerative potentialCell-derived cardiomyocytesInfarcted areaSurvival rateInfarction modelInfarcted tissueScar areaEndothelial cellsCardiac regenerationCardiac patchesRegenerative potentialEchocardiographyA Net Mold-Based Method of Biomaterial-Free Three-Dimensional Cardiac Tissue Creation
Yang B, Lui C, Yeung E, Matsushita H, Jeyaram A, Pitaktong I, Inoue T, Mohamed Z, Ong CS, DiSilvestre D, Jay SM, Tung L, Tomaselli G, Ma C, Hibino N. A Net Mold-Based Method of Biomaterial-Free Three-Dimensional Cardiac Tissue Creation. Tissue Engineering Part C Methods 2019, 25: 243-252. PMID: 30913987, DOI: 10.1089/ten.tec.2019.0003.Peer-Reviewed Original ResearchConceptsCardiac tissueSignificant public health burdenSmaller scar areaPublic health burdenAlternative treatment strategiesCollagen I expressionHeart failureLeft anteriorEjection fractionGel patchHealth burdenRat modelTreatment strategiesI expressionSimple reproducible methodEndothelial cellsScar areaThree-dimensional cardiac tissueCell viabilityTissueReproducible methodIrreversible lossCellsFormation of Neoarteries with Optimal Remodeling Using Rapidly Degrading Textile Vascular Grafts
Fukunishi T, Ong CS, Lui C, Pitaktong I, Smoot C, Harris J, Gabriele P, Vricella L, Santhanam L, Lu S, Hibino N. Formation of Neoarteries with Optimal Remodeling Using Rapidly Degrading Textile Vascular Grafts. Tissue Engineering Part A 2019, 25: 632-641. PMID: 30382009, DOI: 10.1089/ten.tea.2018.0167.Peer-Reviewed Original Research
2018
3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects
Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N. 3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects. BioMed Research International 2018, 2018: 6497242. PMID: 29850546, PMCID: PMC5937623, DOI: 10.1155/2018/6497242.Peer-Reviewed Original ResearchIn vivo therapeutic applications of cell spheroids
Ong CS, Zhou X, Han J, Huang CY, Nashed A, Khatri S, Mattson G, Fukunishi T, Zhang H, Hibino N. In vivo therapeutic applications of cell spheroids. Biotechnology Advances 2018, 36: 494-505. PMID: 29408559, DOI: 10.1016/j.biotechadv.2018.02.003.Peer-Reviewed Original Research
2017
Review of Vascular Graft Studies in Large Animal Models
Liu RH, Ong CS, Fukunishi T, Ong K, Hibino N. Review of Vascular Graft Studies in Large Animal Models. Tissue Engineering Part B Reviews 2017, 24: 133-143. PMID: 28978267, PMCID: PMC6426275, DOI: 10.1089/ten.teb.2017.0350.Peer-Reviewed Original Research3D bioprinting using stem cells
Ong CS, Yesantharao P, Huang CY, Mattson G, Boktor J, Fukunishi T, Zhang H, Hibino N. 3D bioprinting using stem cells. Pediatric Research 2017, 83: 223-231. PMID: 28985202, DOI: 10.1038/pr.2017.252.Peer-Reviewed Original ResearchAdipose TissueAnimalsArtificial OrgansBiocompatible MaterialsBioprintingBone and BonesCardiovascular SystemHuman Umbilical Vein Endothelial CellsHumansInduced Pluripotent Stem CellsLasersLiverMesenchymal Stem CellsMiceMuscle, SkeletalNervous SystemPrinting, Three-DimensionalRegenerative MedicineSkinWound Healing*Bilateral Arteriovenous Shunts as a Method for Evaluating Tissue-Engineered Vascular Grafts in Large Animal Models
Ong CS, Fukunishi T, Liu RH, Nelson K, Zhang H, Wieczorek E, Palmieri M, Ueyama Y, Ferris E, Geist GE, Youngblood B, Johnson J, Hibino N. *Bilateral Arteriovenous Shunts as a Method for Evaluating Tissue-Engineered Vascular Grafts in Large Animal Models. Tissue Engineering Part C Methods 2017, 23: 728-735. PMID: 28741438, PMCID: PMC6436030, DOI: 10.1089/ten.tec.2017.0217.Peer-Reviewed Original ResearchConceptsLarge animal modelAnimal modelsAcute heart failureHypoxic brain injuryTissue-engineered vascular graftsNon-invasive evaluationHuman clinical trialsVascular graftsArterial pressureGraft patencyHeart failureGraft flowGraft diameterPreclinical dataBrain injuryClinical trialsContralateral sideUltrasound guidancePathological analysisArteriovenous shuntsPreclinical evaluationNeedle punctureInter-subject variabilityImplantation modelGraftBiomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes
Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli GF, Hibino N. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Scientific Reports 2017, 7: 4566. PMID: 28676704, PMCID: PMC5496874, DOI: 10.1038/s41598-017-05018-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiocompatible MaterialsBioprintingCell DifferentiationCells, CulturedElectrophysiological PhenomenaEndothelial CellsFibroblastsInduced Pluripotent Stem CellsMyocardiumMyocytes, CardiacPrinting, Three-DimensionalRatsSpheroids, CellularTissue EngineeringTissue ScaffoldsTissue TransplantationConceptsCardiac patchesRole of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts
Fukunishi T, Best CA, Ong CS, Groehl T, Reinhardt J, Yi T, Miyachi H, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Engineering Part A 2017, 24: 135-144. PMID: 28486019, PMCID: PMC5770093, DOI: 10.1089/ten.tea.2017.0044.Peer-Reviewed Original ResearchConceptsTissue-engineered vascular graftsElectrospun scaffoldsNeotissue formationNanofiber scaffoldsCardiovascular tissue engineeringUnseeded scaffoldsCell seeding efficiencyVascular graftsScaffold parametersTissue engineeringSeeding efficiencyPromising technologySeeded vascular graftsSeeded scaffoldsRational designElectron microscopyOptimal combinationPolyglycolic acidScaffoldsDesignConfluent endothelial monolayersSolutionEngineering
2016
Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model
Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, Breuer CK, Krieger A, Johnson J, Hibino N. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. Journal Of Thoracic And Cardiovascular Surgery 2016, 153: 924-932. PMID: 27938900, PMCID: PMC5715716, DOI: 10.1016/j.jtcvs.2016.10.066.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Vessel ProsthesisBlood Vessel Prosthesis ImplantationComputed Tomography AngiographyComputer-Aided DesignEndothelial CellsExtracellular MatrixMacrophagesModels, AnimalMyocytes, Smooth MuscleNanostructuresNanotechnologyNeointimaPhlebographyPrinting, Three-DimensionalProsthesis DesignSheep, DomesticTime FactorsTissue EngineeringVascular PatencyVascular RemodelingVena Cava, InferiorVenous PressureConceptsTissue-engineered vascular graftsSimilar mechanical propertiesComplex anatomical shapesMechanical propertiesVascular graftsNative inferior vena cavaBiodegradable scaffoldsComputer-aided designFeasible technologyNanofiber scaffoldsBiomechanical evaluationPrintingPressure gradientMandrelWall thicknessScaffoldsTechnologyAnatomic requirementsThicknessLayerDepositionEndothelializationTissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model
Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLOS ONE 2016, 11: e0158555. PMID: 27467821, PMCID: PMC4965077, DOI: 10.1371/journal.pone.0158555.Peer-Reviewed Original ResearchConceptsMechanical propertiesPCL/chitosan scaffoldsNeotissue formationSmall diameter prosthetic graftsMechanical analysisVascular graftsElectrospun polycaprolactoneChitosan scaffoldsBiodegradable scaffoldsTEVGsArterial vascular graftsBlend nanofibersFast degradationPolycaprolactoneWall thicknessScaffoldsOriginal scaffoldMaterialsHost cell infiltrationPropertiesNanofibersMatrix constituentsNeotissuePatient's own cellsMacrophage infiltration
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply