2025
High-resolution structures of Myosin-IC reveal a unique actin-binding orientation, ADP release pathway, and power stroke trajectory
Chavali S, Carman P, Shuman H, Ostap E, Sindelar C. High-resolution structures of Myosin-IC reveal a unique actin-binding orientation, ADP release pathway, and power stroke trajectory. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2415457122. PMID: 40014570, PMCID: PMC11892617, DOI: 10.1073/pnas.2415457122.Peer-Reviewed Original ResearchConceptsN-terminal extensionATP bindingRegulating ATP bindingADP releaseClass I myosinsLever arm swingStructure of myosinCryo-EM structureHigh-resolution structuresMembrane-bound vesiclesActin interfaceMyosin superfamilyMyosin familyActin filamentsAbsence of ADPMembrane remodelingNucleotide pocketMotile behaviorMyo1cPlasma membraneBiological functionsActinCryo-EM dataMotor domainMyosin
2018
High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing
Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R, Shuman H, Ostap EM, Sindelar CV. High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings Of The National Academy Of Sciences Of The United States Of America 2018, 115: 1292-1297. PMID: 29358376, PMCID: PMC5819444, DOI: 10.1073/pnas.1718316115.Peer-Reviewed Original ResearchConceptsN-terminal subdomainHigh-resolution cryo-EM structuresADP stateNear-atomic resolution structuresCryo-EM structureCryo-electron microscopyHigh-resolution structuresIsoform-dependent mannerFilamentous actinResolution structureStructural basisMyosin IBActin filamentsStructural diversityRelease pathwayADP releaseActinPointed endPotent stabilizerMyosin
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply