2024
DengueSeq: a pan-serotype whole genome amplicon sequencing protocol for dengue virus
Vogels C, Hill V, Breban M, Chaguza C, Paul L, Sodeinde A, Taylor-Salmon E, Ott I, Petrone M, Dijk D, Jonges M, Welkers M, Locksmith T, Dong Y, Tarigopula N, Tekin O, Schmedes S, Bunch S, Cano N, Jaber R, Panzera C, Stryker I, Vergara J, Zimler R, Kopp E, Heberlein L, Herzog K, Fauver J, Morrison A, Michael S, Grubaugh N. DengueSeq: a pan-serotype whole genome amplicon sequencing protocol for dengue virus. BMC Genomics 2024, 25: 433. PMID: 38693476, PMCID: PMC11062901, DOI: 10.1186/s12864-024-10350-x.Peer-Reviewed Original ResearchConceptsAmplicon sequencing protocolsPrimer schemeSequencing protocolGenomic surveillanceDengue virus serotypesAmplicon sequencing workflowClinical specimensHigh genome coverageWhole-genome sequencingDengue virusVirus serotypesGenome coverageVirus stocksGenetic diversitySequencing instrumentsSequencing workflowGenotype VIDiverse serotypesSequence of samplesGenotype IVPrimersSurveillance of dengue virusSerotypesVirus copiesSerotype-specific
2022
Lineage abundance estimation for SARS-CoV-2 in wastewater using transcriptome quantification techniques
Baaijens J, Zulli A, Ott I, Nika I, van der Lugt M, Petrone M, Alpert T, Fauver J, Kalinich C, Vogels C, Breban M, Duvallet C, McElroy K, Ghaeli N, Imakaev M, Mckenzie-Bennett M, Robison K, Plocik A, Schilling R, Pierson M, Littlefield R, Spencer M, Simen B, Hanage W, Grubaugh N, Peccia J, Baym M. Lineage abundance estimation for SARS-CoV-2 in wastewater using transcriptome quantification techniques. Genome Biology 2022, 23: 236. PMID: 36348471, PMCID: PMC9643916, DOI: 10.1186/s13059-022-02805-9.Peer-Reviewed Original Research
2021
Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies
Kissler SM, Fauver JR, Mack C, Olesen SW, Tai C, Shiue KY, Kalinich CC, Jednak S, Ott IM, Vogels CBF, Wohlgemuth J, Weisberger J, DiFiori J, Anderson DJ, Mancell J, Ho DD, Grubaugh ND, Grad YH. Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies. PLOS Biology 2021, 19: e3001333. PMID: 34252080, PMCID: PMC8297933, DOI: 10.1371/journal.pbio.3001333.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionViral RNA concentrationClearance phaseAcute SARS-CoV-2 infectionReverse transcription-PCR testingPeak viral concentrationPersistent viral RNAPositive PCR testTranscription-PCR testingViral proliferationPublic health strategiesRNA concentrationViral concentrationInfection stagesCycle threshold valuesAcute infectionAsymptomatic individualsTest turnaround timeSymptomatic individualsClinical measuresHealth strategiesPatient progressPCR testingInfectionViral dynamicsStability of SARS-CoV-2 RNA in Nonsupplemented Saliva - Volume 27, Number 4—April 2021 - Emerging Infectious Diseases journal - CDC
Ott IM, Strine MS, Watkins AE, Boot M, Kalinich CC, Harden CA, Vogels CBF, Casanovas-Massana A, Moore AJ, Muenker MC, Nakahata M, Tokuyama M, Nelson A, Fournier J, Bermejo S, Campbell M, Datta R, Dela Cruz CS, Farhadian SF, Ko AI, Iwasaki A, Grubaugh ND, Wilen CB, Wyllie AL, . Stability of SARS-CoV-2 RNA in Nonsupplemented Saliva - Volume 27, Number 4—April 2021 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases 2021, 27: 1146-1150. PMID: 33754989, PMCID: PMC8007305, DOI: 10.3201/eid2704.204199.Peer-Reviewed Original Research
2020
Detection of SARS-CoV-2 RNA by multiplex RT-qPCR
Kudo E, Israelow B, Vogels CBF, Lu P, Wyllie AL, Tokuyama M, Venkataraman A, Brackney DE, Ott IM, Petrone ME, Earnest R, Lapidus S, Muenker MC, Moore AJ, Casanovas-Massana A, Team Y, Omer SB, Dela Cruz CS, Farhadian SF, Ko AI, Grubaugh ND, Iwasaki A. Detection of SARS-CoV-2 RNA by multiplex RT-qPCR. PLOS Biology 2020, 18: e3000867. PMID: 33027248, PMCID: PMC7571696, DOI: 10.1371/journal.pbio.3000867.Peer-Reviewed Original ResearchMeSH KeywordsBetacoronavirusCase-Control StudiesClinical Laboratory TechniquesCoronavirus InfectionsCOVID-19COVID-19 TestingDNA PrimersHEK293 CellsHumansLimit of DetectionMultiplex Polymerase Chain ReactionNasopharynxPandemicsPneumonia, ViralReagent Kits, DiagnosticReverse Transcriptase Polymerase Chain ReactionRNA, ViralSARS-CoV-2United StatesConceptsSARS-CoV-2 RNAMultiplex RT-qPCRRT-qPCRSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testingSARS-CoV-2Quantitative reverse transcription PCRCycle threshold valuesReverse transcription-PCRRT-qPCR assaysDisease controlMultiplex RT-qPCR assayTranscription-PCRAssaysSingle assayLow copy numberSex differences in immune responses that underlie COVID-19 disease outcomes
Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, Silva J, Mao T, Oh JE, Tokuyama M, Lu P, Venkataraman A, Park A, Liu F, Meir A, Sun J, Wang EY, Casanovas-Massana A, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Shaw A, Fournier J, Odio C, Farhadian S, Dela Cruz C, Grubaugh N, Schulz W, Ring A, Ko A, Omer S, Iwasaki A. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588: 315-320. PMID: 32846427, PMCID: PMC7725931, DOI: 10.1038/s41586-020-2700-3.Peer-Reviewed Original ResearchConceptsInnate immune cytokinesFemale patientsMale patientsImmune cytokinesDisease outcomeImmune responseCOVID-19COVID-19 disease outcomesPoor T cell responsesSARS-CoV-2 infectionSevere acute respiratory syndrome coronavirusAcute respiratory syndrome coronavirusSex-based approachModerate COVID-19Sex differencesRobust T cell activationT cell responsesWorse disease progressionWorse disease outcomesHigher plasma levelsNon-classical monocytesCoronavirus disease 2019T cell activationImmunomodulatory medicationsPlasma cytokinesSARS-CoV-2 infection of the placenta
Hosier H, Farhadian SF, Morotti RA, Deshmukh U, Lu-Culligan A, Campbell KH, Yasumoto Y, Vogels C, Casanovas-Massana A, Vijayakumar P, Geng B, Odio CD, Fournier J, Brito AF, Fauver JR, Liu F, Alpert T, Tal R, Szigeti-Buck K, Perincheri S, Larsen C, Gariepy AM, Aguilar G, Fardelmann KL, Harigopal M, Taylor HS, Pettker CM, Wyllie AL, Dela Cruz CS, Ring AM, Grubaugh ND, Ko AI, Horvath TL, Iwasaki A, Reddy UM, Lipkind HS. SARS-CoV-2 infection of the placenta. Journal Of Clinical Investigation 2020, 130: 4947-4953. PMID: 32573498, PMCID: PMC7456249, DOI: 10.1172/jci139569.Peer-Reviewed Case Reports and Technical NotesMeSH KeywordsAbortion, TherapeuticAbruptio PlacentaeAdultBetacoronavirusCoronavirus InfectionsCOVID-19FemaleHumansMicroscopy, Electron, TransmissionPandemicsPhylogenyPlacentaPneumonia, ViralPre-EclampsiaPregnancyPregnancy Complications, InfectiousPregnancy Trimester, SecondRNA, ViralSARS-CoV-2Viral LoadConceptsSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2SARS-CoV-2 infectionRespiratory syndrome coronavirus 2SARS-CoV-2 invasionMaternal antibody responseSymptomatic COVID-19Second trimester pregnancySyndrome coronavirus 2Coronavirus disease 2019Materno-fetal interfaceDense macrophage infiltratesPlacental abruptionSevere preeclampsiaMacrophage infiltratesSevere morbidityTrimester pregnancyPregnant womenCoronavirus 2Antibody responseBackgroundThe effectsDisease 2019Histological examinationImmunohistochemical assaysPlacentaAnalytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets
Vogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, Petrone ME, Casanovas-Massana A, Catherine Muenker M, Moore AJ, Klein J, Lu P, Lu-Culligan A, Jiang X, Kim DJ, Kudo E, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Tokuyama M, Venkataraman A, Weizman OE, Wong P, Yang Y, Cheemarla NR, White EB, Lapidus S, Earnest R, Geng B, Vijayakumar P, Odio C, Fournier J, Bermejo S, Farhadian S, Dela Cruz CS, Iwasaki A, Ko AI, Landry ML, Foxman EF, Grubaugh ND. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nature Microbiology 2020, 5: 1299-1305. PMID: 32651556, PMCID: PMC9241364, DOI: 10.1038/s41564-020-0761-6.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoV-2 RTSevere acute respiratory syndrome coronavirusAcute respiratory syndrome coronavirusViral RNA copiesPublic health laboratoriesPublic health interventionsReverse transcription-PCR assaySARS-CoV-2 diagnostic testingDiagnostic assaysTranscription-PCR assaySARS-CoV-2 evolutionQuantitative reverse transcription-PCR assaysRapid diagnostic assaysHealth laboratoriesHealth interventionsDiagnostic testingRNA copiesPrimer-probe setsAssaysLow sensitivityCritical needAnalytical sensitivity
2019
Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti
Göertz GP, van Bree JWM, Hiralal A, Fernhout BM, Steffens C, Boeren S, Visser TM, Vogels CBF, Abbo SR, Fros JJ, Koenraadt CJM, van Oers MM, Pijlman GP. Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 19136-19144. PMID: 31488709, PMCID: PMC6754610, DOI: 10.1073/pnas.1905617116.Peer-Reviewed Original ResearchConceptsSubgenomic flavivirus RNAInfectious blood mealZika virusMosquito infectionWild-type Zika virusesFlavivirus RNAMosquito midgut barrierArthropod-borne flavivirusZika virus transmissionBlood mealGlobal human health threatMosquito cell culturesZIKV infectionMosquito salivaIntrathoracic injectionViral Small Interfering RNAsInfected mosquitoesViral titersAntiviral activityFlavivirus replicationFlavivirus transmissionMidgut barrierHealth threatInfectionInfected cellsTravel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic
Grubaugh ND, Saraf S, Gangavarapu K, Watts A, Tan AL, Oidtman RJ, Ladner JT, Oliveira G, Matteson NL, Kraemer MUG, Vogels CBF, Hentoff A, Bhatia D, Stanek D, Scott B, Landis V, Stryker I, Cone MR, Kopp EW, Cannons AC, Heberlein-Larson L, White S, Gillis LD, Ricciardi MJ, Kwal J, Lichtenberger PK, Magnani DM, Watkins DI, Palacios G, Hamer DH, Network G, Gardner LM, Perkins TA, Baele G, Khan K, Morrison A, Isern S, Michael SF, Andersen KG. Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell 2019, 178: 1057-1071.e11. PMID: 31442400, PMCID: PMC6716374, DOI: 10.1016/j.cell.2019.07.018.Peer-Reviewed Original Research
2016
Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes
Göertz GP, Fros JJ, Miesen P, Vogels CB, van der Bent ML, Geertsema C, Koenraadt CJ, van Rij RP, van Oers MM, Pijlman GP. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. Journal Of Virology 2016, 90: 10145-10159. PMID: 27581979, PMCID: PMC5105652, DOI: 10.1128/jvi.00930-16.Peer-Reviewed Original ResearchConceptsSubgenomic flavivirus RNARNA interference machineryCulex pipiens mosquitoesWest Nile virusInterference machinerySfRNA productionPipiens mosquitoesBiological functionsUntranslated regionNile virusPivotal biological functionsIntrathoracic injectionWild-type WNVRNA deep sequencingKey biological functionsBlood mealFlavivirus RNAMosquito cell linesFlavivirus West Nile virusViral genomic RNAMosquito midgut barrierMutant West Nile virusTick-borne flavivirusesWNV-infected mosquitoesMammalian cells