2025
Nongenetic adaptation by collective migration
Vo L, Avgidis F, Mattingly H, Edmonds K, Burger I, Balasubramanian R, Shimizu T, Kazmierczak B, Emonet T. Nongenetic adaptation by collective migration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2423774122. PMID: 39970001, PMCID: PMC11874451, DOI: 10.1073/pnas.2423774122.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalChemotaxisEscherichia coliEscherichia coli ProteinsGene Expression Regulation, BacterialPhenotypeConceptsGene regulationCollective migrationPhenotype distributionPhenotypic compositionStress response pathwaysSwimming phenotypeCell populationsBacterial populationsStress responseAbundance distributionMultidimensional phenotypesGenetic mutationsPhenotypeDiverse environmentsEnvironmental conditionsGenesMutationsSwimming behaviorChanging environmentDoubling timeMigrating populationCellsRegulationMigrationAdaptation
2017
Synthesis of [32P]-c-di-GMP for Diguanylate Cyclase and Phosphodiesterase Activity Determinations
Kazmierczak BI. Synthesis of [32P]-c-di-GMP for Diguanylate Cyclase and Phosphodiesterase Activity Determinations. Methods In Molecular Biology 2017, 1657: 23-29. PMID: 28889283, DOI: 10.1007/978-1-4939-7240-1_3.Peer-Reviewed Original ResearchDetermining Diguanylate Cyclase Activity (Radioactive Assay)
Kazmierczak BI. Determining Diguanylate Cyclase Activity (Radioactive Assay). Methods In Molecular Biology 2017, 1657: 285-289. PMID: 28889302, DOI: 10.1007/978-1-4939-7240-1_22.Peer-Reviewed Original Research
2006
Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa
Kazmierczak BI, Lebron MB, Murray TS. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Molecular Microbiology 2006, 60: 1026-1043. PMID: 16677312, PMCID: PMC3609419, DOI: 10.1111/j.1365-2958.2006.05156.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsCell MovementCyclic GMPEscherichia coli ProteinsFemaleFimbriae, BacterialHeLa CellsHumansMiceMice, Inbred C57BLPhosphoric Diester HydrolasesPhosphorus-Oxygen LyasesPneumonia, BacterialPoint MutationProtein Structure, TertiaryPseudomonas aeruginosaSequence DeletionVirulenceConceptsEAL domainBacterial poleGGDEF-EAL proteinsCyclic dimeric guanosine monophosphateDiguanylate cyclase activityPolar surface structuresType IV piliWild-type strainGGDEF domainDiguanylate cyclasesREC domainLocalization signalPilus assemblyGGDEFNon-polar sitesFimXSurface piliPseudomonas aeruginosaPhosphodiesterase activityBiofilm formationProteinMutantsPiliMotilityDomain
2001
Rho GTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells
Kazmierczak B, Jou T, Mostov K, Engel J. Rho GTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells. Cellular Microbiology 2001, 3: 85-98. PMID: 11207623, DOI: 10.1046/j.1462-5822.2001.00091.x.Peer-Reviewed Original ResearchConceptsRho-GTP levelsP. aeruginosa internalizationRho familyEpithelial cellsGTP levelsRho-specific inhibitorRho family GTPasesC3 ADP-ribosyltransferaseRho GTPase activityPathogen Pseudomonas aeruginosaGram-negative pathogen Pseudomonas aeruginosaMadin-Darby canine kidney cellsPseudomonas aeruginosa internalizationCanine kidney cellsNative RhoActive alleleBacterial internalizationGTPase activityP. aeruginosa strain PA103Fusion constructsADP-ribosyltransferaseLatrunculin A.Active Rac1Bacterial uptakeHeLa cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply