2022
Inflammasome activation in infected macrophages drives COVID-19 pathology
Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B, Blackburn HN, Velazquez SE, Chen YG, Halene S, Iwasaki A, Meffre E, Nussenzweig M, Lieberman J, Wilen CB, Kluger Y, Flavell RA. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022, 606: 585-593. PMID: 35483404, PMCID: PMC9288243, DOI: 10.1038/s41586-022-04802-1.Peer-Reviewed Original ResearchConceptsInflammasome activationLung inflammationInflammatory responseInfected macrophagesSARS-CoV-2 infectionHuman macrophagesChronic lung pathologyPersistent lung inflammationSevere COVID-19Immune inflammatory responseInflammatory cytokine productionHumanized mouse modelNLRP3 inflammasome pathwayCOVID-19 pathologyCOVID-19SARS-CoV-2Productive viral cycleHyperinflammatory stateChronic stageIL-18Cytokine productionInflammatory cytokinesLung pathologyInflammasome pathwayInterleukin-1
2020
Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19
Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19. The Journal Of Immunology 2020, 205: ji2000513. PMID: 32493814, PMCID: PMC7343621, DOI: 10.4049/jimmunol.2000513.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsAntiviral AgentsBetacoronavirusCoronavirus InfectionsCOVID-19COVID-19 Drug TreatmentHumansImmunity, InnateInflammasomesIntercellular Signaling Peptides and ProteinsMacrophages, AlveolarPandemicsPneumonia, ViralPyroptosisSARS-CoV-2Severe acute respiratory syndrome-related coronavirusSignal TransductionConceptsSevere acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infectionSevere acute respiratory syndrome-related coronavirus 2Coronavirus disease 2019 (COVID-19) patientsSevere coronavirus disease 2019Coronavirus 2 infectionAvailable pharmaceutical agentsCoronavirus disease 2019Innate immune pathwaysClinical outcomesCoronavirus 2Inflammatory responseCellular pyroptosisDisease 2019Downstream cytokinesInflammasome activationInflammasome pathwayTherapeutic targetImmune pathwaysPromising targetPharmaceutical agentsCOVID-19PyroptosisPatientsCytokinesInflammasome
2019
Aedes aegypti AgBR1 antibodies modulate early Zika virus infection of mice
Uraki R, Hastings AK, Marin-Lopez A, Sumida T, Takahashi T, Grover JR, Iwasaki A, Hafler DA, Montgomery RR, Fikrig E. Aedes aegypti AgBR1 antibodies modulate early Zika virus infection of mice. Nature Microbiology 2019, 4: 948-955. PMID: 30858571, PMCID: PMC6533137, DOI: 10.1038/s41564-019-0385-x.Peer-Reviewed Original ResearchConceptsZika virus infectionVirus infectionZika virusAegypti salivary proteinsGuillain-Barre syndromeEarly inflammatory responseSkin of micePrevention of mosquitoInflammatory responseAedes aegypti mosquitoesTherapeutic measuresSalivary factorsSalivary proteinsMosquito-borneInfectionMiceSubstantial mortalityRecent epidemicProtein 1Aegypti mosquitoesAntigenic proteinsVirusAntibodiesMosquitoesAntiserum
2016
Viral Spread to Enteric Neurons Links Genital HSV-1 Infection to Toxic Megacolon and Lethality
Khoury-Hanold W, Yordy B, Kong P, Kong Y, Ge W, Szigeti-Buck K, Ralevski A, Horvath TL, Iwasaki A. Viral Spread to Enteric Neurons Links Genital HSV-1 Infection to Toxic Megacolon and Lethality. Cell Host & Microbe 2016, 19: 788-799. PMID: 27281569, PMCID: PMC4902295, DOI: 10.1016/j.chom.2016.05.008.Peer-Reviewed Original ResearchConceptsGenital HSV-1 infectionEnteric nervous systemHSV-1 infectionSensory nervous systemNervous systemGenital herpesToxic megacolonHSV-1Genital mucosal epithelial cellsPeripheral sensory nervous systemDorsal root gangliaPathological inflammatory responsesMucosal epithelial cellsHerpes simplex virus 1Simplex virus 1Urinary retentionEnteric neuronsLaxative treatmentAutonomic gangliaRoot gangliaInflammatory responseViral gene transcriptionMouse modelInfectionEpithelial cells
2013
Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I
Pang IK, Pillai PS, Iwasaki A. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 13910-13915. PMID: 23918369, PMCID: PMC3752242, DOI: 10.1073/pnas.1303275110.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBronchoalveolar Lavage FluidCytokinesDEAD Box Protein 58DEAD-box RNA HelicasesFlow CytometryHistological TechniquesImmunity, InnateImmunohistochemistryInfluenza A virusMembrane GlycoproteinsMiceMice, Inbred C57BLOrthomyxoviridae InfectionsRespiratory Tract InfectionsSignal TransductionToll-Like Receptor 7Viral LoadVirus ReplicationConceptsToll-like receptor 7Innate immune responseRespiratory tractInfected wild-type miceHost innate immune responseAirways of miceViral target cellsWild-type miceAcid-inducible gene 1RIG-I pathwayPattern recognition receptorsHost innate defenseViral replication efficiencyInflammatory mediatorsBronchoalveolar lavageViral loadProinflammatory programProinflammatory responseReceptor 7IAV infectionInflammatory responseVirus infectionLow doseViral replicationVirus replication
2006
A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN–based vaginal microbicide
Shen H, Iwasaki A. A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN–based vaginal microbicide. Journal Of Clinical Investigation 2006, 116: 2237-2243. PMID: 16878177, PMCID: PMC1518794, DOI: 10.1172/jci28681.Peer-Reviewed Original ResearchConceptsCpG ODNPlasmacytoid DCsHerpes simplex virus type 2Simplex virus type 2Lethal vaginal challengeVaginal stromal cellsPlasmacytoid dendritic cellsGenital herpes infectionIFN-alphabeta receptorAssociated inflammatory responseVirus type 2Vaginal challengeDendritic cellsHerpes infectionTLR agonistsMicrobicide efficacyTopical microbicidesVaginal microbicidesInflammatory responseI IFNAntiviral protectionType 2Antiviral genesStromal compartmentVaginal application