2025
The first complete 3D reconstruction and morphofunctional mapping of an insect eye
Makarova A, Chua N, Diakova A, Desyatirkina I, Gunn P, Pang S, Xu C, Hess H, Chklovskii D, Polilov A. The first complete 3D reconstruction and morphofunctional mapping of an insect eye. ELife 2025, 14: rp103247. PMID: 40310676, PMCID: PMC12045625, DOI: 10.7554/elife.103247.Peer-Reviewed Original ResearchConnectome-driven neural inventory of a complete visual system
Nern A, Loesche F, Takemura S, Burnett L, Dreher M, Gruntman E, Hoeller J, Huang G, Januszewski M, Klapoetke N, Koskela S, Longden K, Lu Z, Preibisch S, Qiu W, Rogers E, Seenivasan P, Zhao A, Bogovic J, Canino B, Clements J, Cook M, Finley-May S, Flynn M, Hameed I, Fragniere A, Hayworth K, Hopkins G, Hubbard P, Katz W, Kovalyak J, Lauchie S, Leonard M, Lohff A, Maldonado C, Mooney C, Okeoma N, Olbris D, Ordish C, Paterson T, Phillips E, Pietzsch T, Salinas J, Rivlin P, Schlegel P, Scott A, Scuderi L, Takemura S, Talebi I, Thomson A, Trautman E, Umayam L, Walsh C, Walsh J, Xu C, Yakal E, Yang T, Zhao T, Funke J, George R, Hess H, Jefferis G, Knecht C, Korff W, Plaza S, Romani S, Saalfeld S, Scheffer L, Berg S, Rubin G, Reiser M. Connectome-driven neural inventory of a complete visual system. Nature 2025, 641: 1225-1237. PMID: 40140576, PMCID: PMC12119369, DOI: 10.1038/s41586-025-08746-0.Peer-Reviewed Original ResearchConceptsVisual systemNetwork of neuronsVisual neuronsNeural architectureConnectivity informationFocused ion beam millingSplit-GAL4 linesIon beam millingSpatial featuresVisual sceneVisualization capabilitiesComputational frameworkDiverse featuresExpert curationVisual regionsDiverse networksBeam millingStructure-function relationshipsCapability of flyingRight optic lobesNeurotransmitter identityVisionOptic lobeCell typesComprehensive setMulticilia dynamically transduce Sonic Hedgehog signaling to regulate choroid plexus functions
Mao S, Song R, Jin S, Pang S, Jovanovic A, Zimmerman A, Li P, Wu X, Wendland M, Lin K, Chen W, Choksi S, Chen G, Holtzman M, Reiter J, Wan Y, Xuan Z, Xiang Y, Xu C, Upadhyayula S, Hess H, He L. Multicilia dynamically transduce Sonic Hedgehog signaling to regulate choroid plexus functions. Cell Reports 2025, 44: 115383. PMID: 40057957, DOI: 10.1016/j.celrep.2025.115383.Peer-Reviewed Original ResearchConceptsCSF productionChoroid plexusCerebrospinal fluidSonic hedgehog signalingWater channel AQP1Increased CSF productionHedgehog signalingChoroid plexus functionMotile ciliaMulticiliaSensory ciliaShh signalingNeonatal hydrocephalusSonic hedgehogCiliary lengthRegulate CSF productionSignal intensityCiliary ultrastructureChoroidEpithelial monolayersAQP1Developmental dynamicsCiliaATP1A2PlexusThe inner core enables transient touch detection in the Pacinian corpuscle
Ziolkowski L, Nikolaev Y, Chikamoto A, Oda M, Feketa V, Monedero-Alonso D, Ardasheva S, Bae S, Xu C, Pang S, Gracheva E, Bagriantsev S. The inner core enables transient touch detection in the Pacinian corpuscle. Science Advances 2025, 11: eadt4837. PMID: 40009676, PMCID: PMC11864184, DOI: 10.1126/sciadv.adt4837.Peer-Reviewed Original Research
2024
Periodic ER-plasma membrane junctions support long-range Ca2+ signal integration in dendrites
Benedetti L, Fan R, Weigel A, Moore A, Houlihan P, Kittisopikul M, Park G, Petruncio A, Hubbard P, Pang S, Xu C, Hess H, Saalfeld S, Rangaraju V, Clapham D, De Camilli P, Ryan T, Lippincott-Schwartz J. Periodic ER-plasma membrane junctions support long-range Ca2+ signal integration in dendrites. Cell 2024, 188: 484-500.e22. PMID: 39708809, DOI: 10.1016/j.cell.2024.11.029.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulum-plasma membrane junctionsEndoplasmic reticulum-plasma membranePlasma membrane of dendritesVoltage-gated Ca<sup>2+</sup> channelsER-plasma membrane junctionsMembrane of dendritesProtein kinase IIRyanodine receptorSynaptic inputsDendritic computationsSpine stimulationNeuronal dendritesKinase IIIntracellular signalingMembrane junctionsPlasma membraneER tubulesSignal propagationSignal transmissionSubcellular architectureRyanodineLadder-like arraysLocal activationReleaseDendritesStructure, interaction and nervous connectivity of beta cell primary cilia
Müller A, Klena N, Pang S, Garcia L, Topcheva O, Aurrecoechea Duran S, Sulaymankhil D, Seliskar M, Mziaut H, Schöniger E, Friedland D, Kipke N, Kretschmar S, Münster C, Weitz J, Distler M, Kurth T, Schmidt D, Hess H, Xu C, Pigino G, Solimena M. Structure, interaction and nervous connectivity of beta cell primary cilia. Nature Communications 2024, 15: 9168. PMID: 39448638, PMCID: PMC11502866, DOI: 10.1038/s41467-024-53348-5.Peer-Reviewed Original ResearchConceptsPrimary ciliaCell's primary ciliumNon-islet cellsPancreatic beta cellsCiliary pocketSensory organellesAxonemal organizationMotility componentsExtrinsic signalsStructural basisBeta cellsCiliaCell typesExpansion microscopyParacrine signalingIslet innervationCellsIsletsBetaAxonemeOrganellesSignalThree-dimensional reconstructionInteractionSpatial mapping of hepatic ER and mitochondria architecture reveals zonated remodeling in fasting and obesity
Parlakgül G, Pang S, Artico L, Min N, Cagampan E, Villa R, Goncalves R, Lee G, Xu C, Hotamışlıgil G, Arruda A. Spatial mapping of hepatic ER and mitochondria architecture reveals zonated remodeling in fasting and obesity. Nature Communications 2024, 15: 3982. PMID: 38729945, PMCID: PMC11087507, DOI: 10.1038/s41467-024-48272-7.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulumER-mitochondria interactionsSubcellular spatial organizationER-mitochondriaER sheetsNutritional fluctuationsFatty acid oxidationNutrient availabilityHepatic fatty acid oxidationMetabolic flexibilityVolume electron microscopyHepatic ERMitochondriaLiver zonationSpatial organizationAcid oxidationPericentral hepatocytesHepatocytesMolecular architectureRibosomeProtein1ReticulumRemodelingZonationInteraction
2023
A complete reconstruction of the early visual system of an adult insect
Chua N, Makarova A, Gunn P, Villani S, Cohen B, Thasin M, Wu J, Shefter D, Pang S, Xu C, Hess H, Polilov A, Chklovskii D. A complete reconstruction of the early visual system of an adult insect. Current Biology 2023, 33: 4611-4623.e4. PMID: 37774707, DOI: 10.1016/j.cub.2023.09.021.Peer-Reviewed Original ResearchThree-dimensional reconstructions of mechanosensory end organs suggest a unifying mechanism underlying dynamic, light touch
Handler A, Zhang Q, Pang S, Nguyen T, Iskols M, Nolan-Tamariz M, Cattel S, Plumb R, Sanchez B, Ashjian K, Shotland A, Brown B, Kabeer M, Turecek J, DeLisle M, Rankin G, Xiang W, Pavarino E, Africawala N, Santiago C, Lee W, Xu C, Ginty D. Three-dimensional reconstructions of mechanosensory end organs suggest a unifying mechanism underlying dynamic, light touch. Neuron 2023, 111: 3211-3229.e9. PMID: 37725982, PMCID: PMC10773061, DOI: 10.1016/j.neuron.2023.08.023.Peer-Reviewed Original Research3D architecture and a bicellular mechanism of touch detection in mechanosensory corpuscle
Nikolaev Y, Ziolkowski L, Pang S, Li W, Feketa V, Xu C, Gracheva E, Bagriantsev S. 3D architecture and a bicellular mechanism of touch detection in mechanosensory corpuscle. Science Advances 2023, 9: eadi4147. PMID: 37703368, PMCID: PMC10499330, DOI: 10.1126/sciadv.adi4147.Peer-Reviewed Original ResearchMultiscale head anatomy of Megaphragma (Hymenoptera: Trichogrammatidae)
Desyatirkina I, Makarova A, Pang S, Xu C, Hess H, Polilov A. Multiscale head anatomy of Megaphragma (Hymenoptera: Trichogrammatidae). Arthropod Structure & Development 2023, 76: 101299. PMID: 37666087, DOI: 10.1016/j.asd.2023.101299.Peer-Reviewed Original ResearchConceptsThree-dimensional electron microscopyParasitoid waspsLarge insectsEvolutionary benefitsTracheal systemWhole insectsMorphological workSubcellular structuresSubcellular levelInsectsSpeciesStomatogastric nervous systemMegaphragmaNeuron nucleiNucleated cellsWaspsGenusSet of musclesNervous systemOrgan systemsMicroinsectsComplexity of organizationsStructural planUltrastructureCellsComparative connectomics and escape behavior in larvae of closely related Drosophila species
Zhu J, Boivin J, Pang S, Xu C, Lu Z, Saalfeld S, Hess H, Ohyama T. Comparative connectomics and escape behavior in larvae of closely related Drosophila species. Current Biology 2023, 33: 2491-2503.e4. PMID: 37285846, DOI: 10.1016/j.cub.2023.05.043.Peer-Reviewed Original ResearchConceptsRelated Drosophila speciesDrosophila speciesEscape behaviorDrosophilid speciesRelated speciesMelanogasterSantomeaVentral nerve cordPlausible mechanistic explanationCommon partnerBehavioral traitsMolecular componentsNoxious cuesComparative connectomicsUnderlying neural circuitsSpeciesDownstream partnersMDIVMechanistic explanation
2022
En bloc preparation of Drosophila brains enables high-throughput FIB-SEM connectomics
Lu Z, Xu C, Hayworth K, Pang S, Shinomiya K, Plaza S, Scheffer L, Rubin G, Hess H, Rivlin P, Meinertzhagen I. En bloc preparation of Drosophila brains enables high-throughput FIB-SEM connectomics. Frontiers In Neural Circuits 2022, 16: 917251. PMID: 36589862, PMCID: PMC9801301, DOI: 10.3389/fncir.2022.917251.Peer-Reviewed Original ResearchThe 3D ultrastructure of the chordotonal organs in the antenna of a microwasp remains complex although simplified
Diakova A, Makarova A, Pang S, Xu C, Hess H, Polilov A. The 3D ultrastructure of the chordotonal organs in the antenna of a microwasp remains complex although simplified. Scientific Reports 2022, 12: 20172. PMID: 36424494, PMCID: PMC9691716, DOI: 10.1038/s41598-022-24390-4.Peer-Reviewed Original ResearchTransverse endoplasmic reticulum expansion in hereditary spastic paraplegia corticospinal axons
Zhu PP, Hung HF, Batchenkova N, Nixon-Abell J, Henderson J, Zheng P, Renvoisé B, Pang S, Xu CS, Saalfeld S, Funke J, Xie Y, Svara F, Hess HF, Blackstone C. Transverse endoplasmic reticulum expansion in hereditary spastic paraplegia corticospinal axons. Human Molecular Genetics 2022, 31: 2779-2795. PMID: 35348668, PMCID: PMC9402237, DOI: 10.1093/hmg/ddac072.Peer-Reviewed Original ResearchRegulation of liver subcellular architecture controls metabolic homeostasis
Parlakgül G, Arruda AP, Pang S, Cagampan E, Min N, Güney E, Lee GY, Inouye K, Hess HF, Xu CS, Hotamışlıgil GS. Regulation of liver subcellular architecture controls metabolic homeostasis. Nature 2022, 603: 736-742. PMID: 35264794, PMCID: PMC9014868, DOI: 10.1038/s41586-022-04488-5.Peer-Reviewed Original Research
2021
An open-access volume electron microscopy atlas of whole cells and tissues
Xu CS, Pang S, Shtengel G, Müller A, Ritter AT, Hoffman HK, Takemura SY, Lu Z, Pasolli HA, Iyer N, Chung J, Bennett D, Weigel AV, Freeman M, van Engelenburg SB, Walther TC, Farese RV, Lippincott-Schwartz J, Mellman I, Solimena M, Hess HF. An open-access volume electron microscopy atlas of whole cells and tissues. Nature 2021, 599: 147-151. PMID: 34616045, PMCID: PMC9004664, DOI: 10.1038/s41586-021-03992-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCells, CulturedDatasets as TopicDrosophila melanogasterFemaleGolgi ApparatusHumansInformation DisseminationInterphaseIslets of LangerhansMaleMiceMicroscopy, Electron, ScanningMicrotubulesNeurogliaNeuronsOpen Access PublishingOrganellesOvarian NeoplasmsRibosomesSynaptic VesiclesT-Lymphocytes, CytotoxicConceptsDrosophila neural tissueWhole cellsThin-section electron microscopyVolume electron microscopyCellular architectureMouse pancreatic isletsCancer cellsEM tomographyCellular structureCellsCellular samplesNeural tissuePancreatic isletsEnhanced signal detectionAtlasBeam-scanning electron microscopyTissueElectron microscopyOpen access dataBiologyImmune cellsSubsequent analysisSEM scanningMicroscopyWhole-cell organelle segmentation in volume electron microscopy
Heinrich L, Bennett D, Ackerman D, Park W, Bogovic J, Eckstein N, Petruncio A, Clements J, Pang S, Xu CS, Funke J, Korff W, Hess HF, Lippincott-Schwartz J, Saalfeld S, Weigel AV. Whole-cell organelle segmentation in volume electron microscopy. Nature 2021, 599: 141-146. PMID: 34616042, DOI: 10.1038/s41586-021-03977-3.Peer-Reviewed Original ResearchConceptsAutomatic reconstructionDeep learning architectureLearning architectureWeb repositoriesOpen dataAutomatic methodThree-dimensional reconstructionSuch methodsVolume electron microscopyQueriesSegmentationRepositoryArchitectureComputer codeSpatial interactionsDatasetReconstructionImagesMetricsCodeSuch reconstructions
2020
3D FIB-SEM reconstruction of microtubule–organelle interaction in whole primary mouse β cells
Müller A, Schmidt D, Xu CS, Pang S, D’Costa J, Kretschmar S, Münster C, Kurth T, Jug F, Weigert M, Hess HF, Solimena M. 3D FIB-SEM reconstruction of microtubule–organelle interaction in whole primary mouse β cells. Journal Of Cell Biology 2020, 220: e202010039. PMID: 33326005, PMCID: PMC7748794, DOI: 10.1083/jcb.202010039.Peer-Reviewed Original ResearchConceptsInsulin secretory granulesΒ-cellsSecretory granulesPrimary mammalian cellsFirst 3D reconstructionPrimary mouse β-cellsMouse β-cellsMammalian cellsMicrotubule organizationPlasma membraneIntracellular traffickingIslet β-cellsMicrotubule networkMicrotubulesUnprecedented resolutionCell constituentsMicrotubule numberCell functionGolgi apparatiCentriolesCellsEndocrine cellsGlucose stimulationEndomembranesGranulesA connectome and analysis of the adult Drosophila central brain
Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie S, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GS, Ito K, Saalfeld S, George R, Meinertzhagen I, Rubin GM, Hess HF, Jain V, Plaza SM. A connectome and analysis of the adult Drosophila central brain. ELife 2020, 9: e57443. PMID: 32880371, PMCID: PMC7546738, DOI: 10.7554/elife.57443.Peer-Reviewed Original ResearchConceptsCentral brainDrosophila central brainAdult Drosophila Central BrainGenetic reagentsFruit flyComputational compartmentsFly brainExhaustive atlasCell typesAnimal behaviorNeural motifsChemical synapsesDrosophilaSuch large data setsNeural circuitsFliesCompartmentalizationLarge fractionMotifSynapsesCell exampleCompartmentsNeuronsElectrical consequences
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply